首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以自制的不同Ti含量的Fe-Ti预制体粘结剂和ZTA(氧化锆增韧氧化铝)陶瓷颗粒为原料,制备出多孔陶瓷预制体,然后采用消失模铸造制备了ZTA陶瓷颗粒增强高铬铸铁基复合材料。利用OM、XRD、SEM等手段分析了复合材料的物相组成,并进行高应力碾碎式三体磨料磨损试验,测试了复合材料的耐磨性,探索了复合材料的磨损机制。结果表明,采用含10wt%Ti预制体粘结剂制备的复合材料耐磨性为高铬铸铁的3倍,采用含15wt%Ti预制体粘结剂制备的复合材料耐磨性为高铬铸铁的2.4倍。复合材料的界面结合良好,磨损过程中,ZTA陶瓷颗粒对高铬铸铁基体形成保护作用,基体对ZTA陶瓷颗粒起到良好的支撑作用,两者协同作用增强了复合材料的耐磨性能。  相似文献   

2.
采用氩气保护条件下无压浸渗工艺,在活性元素Ti的诱导下成功制备了SiC陶瓷/高铬铸铁复合材料,并采用SEM、XRD、EDS等方法进行试验分析。结果表明:SiC颗粒均匀分布在高铬铸铁基体中,两者界面结合良好。复合材料中检测到TiC、TiO、FeO等新相,其中TiC为主要生成物,与SiC颗粒及金属基体均形成紧密结合界面,是高铬铸铁浸渗SiC预制体的关键因素。随着Ti含量增加,高铬铸铁在预制体中的浸渗深度增加。Si元素与Ti的结合能力较弱而向金属基体的扩散较明显; Ti元素易团聚,扩散很微弱,扩散的C元素与Ti元素结合的倾向性较强,生成TiC;Cr元素向SiC颗粒的扩散明显。  相似文献   

3.
采用小颗粒TiC包覆SiC陶瓷颗粒,在惰性气体保护下选用无压浸渗方法制备了高铬铸铁/TiC-SiC复合材料;利用SEM/EDX观察和分析了液态铸铁在SiC预制体中的浸渗情况、组织特征和成分分布;结合高铬铸铁/Ti-SiC复合材料的组织特点和浸渗行为特点,分析了TiC粉体对浸渗行为和复合材料组织的影响。观察结果表明,当TiC加入量≤10%(质量分数,下同)时,Fe/Cr合金无法润湿SiC颗粒,而当加入量≥20%时,Fe/Cr合金和预制体之间润湿性得到改善,增加TiC含量更有利于Fe/Cr合金浸渗;基体中大尺寸SiC颗粒消失,出现了尺寸接近毫米级的条状单质碳,这与高铬铸铁/Ti-SiC复合材料的组织差异较大。对比两种复合材料组织发现,添加Ti粉末在金属液中可与C结合生成TiC,而添加的TiC颗粒在组织中呈鹅卵石状,边缘圆润,出现金属液与陶瓷颗粒之间的互溶。在浸渗过程中,添加TiC和Ti与浸渗金属发生的反应不同,且高质量分数的TiC对金属液浸渗过程有明显的促进作用。  相似文献   

4.
ZTA颗粒增强高铬铸铁基复合材料界面研究   总被引:1,自引:0,他引:1  
以自制Fe-Ti金属粘结剂和ZTA(氧化锆增韧氧化铝)陶瓷颗粒为原料,采用粉末冶金工艺制备多孔陶瓷预制体,并浇注高铬铸铁制备ZTA颗粒增强高铬铸铁基复合材料。使用OM、SEM、XRD等分析手段研究预制体和复合材料的复合界面行为。结果表明,Ti含量15%的粘结剂/ZTA复合界面结合优于Ti含量10%的粘结剂/ZTA复合界面。烧结过程中Ti、O、Zr元素扩散到复合界面微区反应形成致密、连续的Ti O_x过渡层,实现ZTA活化包覆。粘结剂与ZTA结合机制为机械结合与反应冶金结合。Ti含量15%的粘结剂制备的预制体具有一定强度和抗热冲击性能,在高铬铸铁液铸渗情况下能保持结构和尺寸,基体与ZTA结合界面致密,无空隙、孔洞缺陷,Ti O_x过渡层分布于界面处起到活化、改善界面结合的作用。  相似文献   

5.
ZTA/高铬铸铁基复合材料的制备及磨损性能研究   总被引:1,自引:0,他引:1  
将粒径为2~3 mm的ZTA(ZrO2增韧Al2O3)陶瓷颗粒与自制粘结剂经混合烧结后,获得蜂巢状陶瓷预制体,浇注金属液铸渗陶瓷预制体,成功制备出ZTA陶瓷颗粒增强高铬铸铁基耐磨复合材料,并考察了复合材料的三体磨料磨损性能.结果表明,复合材料中陶瓷颗粒的体积分数为47%~55%;陶瓷颗粒与基体界面致密,无缩孔、裂纹等缺陷;复合材料的三体磨料磨损性能是高铬铸铁基体的2.41倍.  相似文献   

6.
颗粒增强高铬铸铁基复合材料的制备、组织与性能   总被引:1,自引:1,他引:0  
郑开宏  赵散梅  王娟  陈亮  李林 《铸造》2012,61(2):165-168
将粒径为1~3 mm的ZTA(ZrO2增韧Al2O3)陶瓷颗粒与自制粘结剂均匀混合后填充到具有蜂窝状内腔的模具中固化后获得蜂窝状多孔陶瓷预制体,浇注高铬铸铁金属液铸渗陶瓷预制体成功制备出ZTA陶瓷颗粒增强高铬铸铁基耐磨复合材料,并考察了复合材料的三体磨料磨损性能.结果表明:复合材料中陶瓷颗粒的体积分数为48%~58%;陶瓷颗粒与基体界面致密,无缩孔、裂纹等缺陷;经热处理后复合材料的耐三体磨料磨损性能是工程中常用的Cr20高铬铸铁的5.9倍.  相似文献   

7.
将B_4C、Cr粉分别包覆在ZTA颗粒表面,压制成预制体。在氩气保护下,使用无压浸渗法制备了ZTA/高铬铸铁基复合材料。采用SEM、EDS、XRD等方法分析复合材料的组织结构、元素分布以及物相组成。结果表明预制体中添加B_4C粉和Cr粉可实现高铬铸铁液对预制体的浸渗,在浸渗过程中B4C会反应生成ZrB_2、Fe_2B、C、B_2O_3等新相,其中ZrB_2与铁液的润湿性较好,作为过渡物质可起到促进浸渗的作用;Cr则是通过降低高铬铸铁液的表面张力来促进浸渗。  相似文献   

8.
浸渗法制备ZTA陶瓷颗粒增强铁基复合材料的研究取得了很大进展。针对陶瓷预制体制备,铁水对陶瓷预制体的浸渗,陶瓷与铁水的润湿性,复合材料界面结合,复合材料耐磨性等方面的研究进行了论述。解决铁水对预制体的润湿性是实现浸渗的先决条件,常用的方法有在陶瓷预制体中添加活性元素,通过化学镀、气相沉积以及包覆等方法对陶瓷表面进行改性等;在陶瓷与金属基体间形成过渡层可以改善结合界面的组织结构,促进陶瓷与金属基体形成冶金结合;铁水对陶瓷预制体的浸渗机理,以及ZTA陶瓷复合材料的耐磨机理尚需要深入研究。  相似文献   

9.
将粒度为-10+16目的 ZTA(Zr O2增韧Al2O3)颗粒表面进行合金化处理后,与自制粘结剂按照一定的比例混合、成型、烧结,获得蜂窝状陶瓷预制件;然后,浇注高铬铸铁铸渗预制件,制备出ZTA陶瓷颗粒增强高铬铸铁基复合材料。结果表明,复合材料中ZTA陶瓷颗粒与高铬铸铁基体界面结合致密,无气孔、夹杂、裂纹等缺陷;在环块三体磨料磨损条件下,复合材料耐磨性能为高铬铸铁基材的4.85倍。将该材料制备的陶瓷金属复合磨辊及衬板投入电厂使用,用户反应良好。  相似文献   

10.
《铸造技术》2017,(1):39-42
铸造烧结法制备ZTA陶瓷颗粒增强高铬铸铁基复合材料工艺过程中,ZTA陶瓷增强体的性能演变直接关系到复合材料的综合性能。本文研究了铸造烧结工艺对ZTA陶瓷组分和力学性能的影响,对比了热处理态ZTA陶瓷与高铬铸铁的三体磨损性能。结果表明:铸造烧结各工艺段,ZTA陶瓷都由t-ZrO_2相、α-Al_2O_3相和少量m-ZrO_2相组成,铸造烧结工艺对ZTA陶瓷密度影响较小,但对抗弯强度和硬度的影响较大;热处理态ZTA陶瓷硬度是高铬铸铁的2.65倍,三体磨料磨损性能是高铬铸铁的1.52倍。  相似文献   

11.
通过掺杂活性元素Ti颗粒,采用无压浸渗法制备了Si C/Fe-Si复合材料。采用XRD、SEM以及EDS等技术手段,分析复合材料的相组成及显微结构。结果表明:Fe-Si合金能够自发浸渗Si C陶瓷预制体,Ti元素在金属熔体与陶瓷颗粒之间形成活性层,促进熔融金属润湿陶瓷,诱发界面反应的发生,形成自发浸渗。在自发浸渗过程中界面反应和元素相互扩散,导致复合材料的相组成和显微结构发生变化。  相似文献   

12.
分别在ZTA颗粒表面镀Ni和包覆Cr粉,采用负压铸渗法制备了ZTA陶瓷颗粒增强高铬铸铁基陶瓷复合材料。采用SEM、EDS、XRD等方法分析复合材料的组织结构、元素分布以及物相组成,探讨其对铸渗效果和界面结合的影响。结果表明,负压铸渗条件下,复合材料界面存在过渡区。过渡区以Si、Na为主,存在Al的扩散聚集,并且含有Fe、Cr、Ni、C、O等元素。元素的扩散有利于改善陶瓷界面润湿性,促进界面浸渗和结合。陶瓷颗粒镀Ni条件下,过渡层形成CrNiFe、NiSi_3P_4、Fe_2Al_5、Na_2NiFeF_7、NaAlSiO_4、Zr_3NiO等多种化合物,陶瓷包覆Cr的复合材料过渡层形成Cr_3O_4、AlCrFe_2、Na_6Al_4Si_4O_(17)等化合物,这些化合物可以改善陶瓷润湿性,提高铸渗效果,促进陶瓷与高铬铸铁结合。  相似文献   

13.
采用铸渗法成功制备出ZTA(ZrO2增韧A12O3)陶瓷颗粒增强合金钢基耐磨复合材料.制备方法:将陶瓷颗粒与自制粘结剂混合填充到具有一定型腔的模具中,加压凝固后获得多孔连通的陶瓷预制体;将预制体固定到铸型中,浇注合金钢,浇注温度1 500--1 560℃,金属液铸渗预制体获得局部复合的耐磨复合材料.结果表明:铸渗效果良好,陶瓷颗粒与合金钢基体界面结合紧密,无缩孔、裂纹等缺陷;陶瓷颗粒在复合材料中的体积分数为42%~56%;在三体磨料磨损条件下,ZTA/合金钢复合材料的抗三体磨料磨损性能是合金钢基体的4.37倍.  相似文献   

14.
将颗粒粒径0.8~3mm的ZrO2增韧Al2O3陶瓷颗粒(ZTA)与自制粘结剂混合均匀后填充至消失模蜂窝状空隙中,采用真空负压一体浇注高铬铸铁金属液铸渗陶瓷颗粒,浇注温度1380~1450℃,制备了陶瓷金属复合耐磨材料。结果表明:ZTA颗粒由粒度0.8~1.2mm、1.8~2.2mm和2.6~3.0mm的颗粒按照1:3:1的体积比例均匀混合构成;ZTA与高铬金属基体界面结合紧密,无缩松、裂纹等缺陷,未因高温金属液体的冲刷发生溃散和漂移;陶瓷金属复合层厚度可达35mm;陶瓷金属复合耐磨材料的耐磨性是高铬铸铁材料耐磨性的2~6倍。  相似文献   

15.
介绍了网络陶瓷/金属复合材料的制备方法,主要包括原位反应法和多孔陶瓷预制体浸渗法,其中多孔陶瓷预制体浸渗法又包括了挤压浸渗法、真空压力浸渗法和无压浸渗法。以泡沫陶瓷为增强相制备金属基复合材料制备方法为例,介绍其三维连续网格制备的不同方法,并结合液态合金在多孔陶瓷内的凝固过程分析方法,分析了目前国内学者在相关领域的研究现状,提出了从凝固学科的角度去研究复合材料成型过程中的流动和传递过程是进一步研究复合材料及其性能提高的有效途径。  相似文献   

16.
研究了一种Ni诱导无压浸渗法制备陶瓷基复合材料的方法:通过粉末冶金法制备出含Ni颗粒的Ni/Al2O3复相陶瓷预制体,真空状态下,在1600℃以不锈钢熔体无压浸渗该Ni/Al2O3预制体,获得了不锈钢浸渗增强的Al2O3陶瓷基复合材料。采用SEM观察了结合界面的微观形貌,用EDS分析了结合界面附近元素含量的变化,用XRD分析了界面反应产物,以抗拉试验测试了钢与复相陶瓷体的界面结合强度。结果表明,钢熔体可浸渗到陶瓷体内部并与Ni互溶形成新的Ni-Fe合金;不锈钢与复相陶瓷的结合界面存在界面反应;界面结合强度的最大值可达到67.5MPa。  相似文献   

17.
基于有限元软件ANSYS Mechanical对ZTA陶瓷颗粒增强高铬铸铁基复合材料(HCCI/ZTAP)的铸造过程的热应力进行了数值模拟。运用热弹塑性模型准确描述了铸造过程中的热应力,对比了预制体中不同形状的孔所产生的热应力,预测了热裂等缺陷。结果表明,随着孔的边数增加,热应力逐渐减小。模型可以很好地预测裂纹等缺陷。  相似文献   

18.
《铸造技术》2015,(11):2702-2704
采用消失模铸造研制WC陶瓷颗粒/高铬铸铁复合材料板锤铸件,从铸件浇冒口系统设计,WC陶瓷颗粒涂层制备与粘结工艺、铸造关键工艺控制、高铬铸铁熔炼与浇注工艺和热处理工艺等方面介绍了试验方法与研制技术。结果表明,WC陶瓷颗粒涂层与高铬铸铁液体复合浇注时,采用提高铁水浇注温度和砂箱内的真空负压度,能增强高铬铸铁与WC陶瓷颗粒的铸渗效果,其截面(厚度为6~8 mm)无孔洞和夹渣(砂)缺陷,界面结合牢固;研制的板锤耐磨性好,使用寿命比原高铬铸铁提高43%,极大地提高设备的生产效率和企业的经济效益,性价比优势明显。  相似文献   

19.
通过ProCAST对Al-Cu合金挤压浸渗多孔陶瓷的过程进行计算机仿真模拟,并在与模拟环境相同的条件下进行试验以验证模拟结果。结果表明,计算机模拟的凝固时间、固液相与试验结果及金相分析吻合,说明提出的简化模型在多孔陶瓷挤压浸渗合金的模拟中是适用的;复合材料的浸渗成形完全不同于一般的合金铸造,多孔陶瓷预制体内部结构的复杂性是造成铸造过程中复合材料内部产生一系列缺陷的主要因素。  相似文献   

20.
研究了添加剂(Ti、Mo、Ti N)对高铬铸铁和Al_2O_3陶瓷颗粒间界面结合行为及断裂强度的影响。结果表明,这3种添加剂均可以改善高铬铸铁与Al_2O_3陶瓷颗粒间的润湿性,增加了二者之间的界面反应程度,实现了二者间界面的冶金结合,从而使Al_2O_3/高铬铸铁复合材料具有较高的断裂强度,其中,尤其以Ti的作用最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号