首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 112 毫秒
1.
近年来, 三元层状碳氮化合物(MAX相)及其衍生二维纳米材料MXene受到了科学界的广泛关注。MAX相的晶体结构由Mn+1Xn结构单元与A元素单原子面交替堆垛排列而成, 兼具金属和陶瓷的诸多优点, 在高温结构材料、摩擦磨损器件、核能结构材料等领域有较大的应用潜力。MAX相的A层原子被刻蚀之后获得成分为Mn+1XnTx(Tx为表面基团)的二维纳米材料, 即MXene, 具有丰富的成分组合以及可调谐的物理化学性质, 在储能器件、电磁屏蔽、电子器件等领域表现出良好的应用前景。本文简要介绍近年来国内外MAX相和MXene材料领域在成分与结构、合成方法、性能与应用研究等方面的研究动态, 据此展望未来几年该类新颖材料的发展方向。  相似文献   

2.
近年来, 一种新型二维过渡金属碳化物及氮化物(MXene)凭借大的比表面积、良好的亲水性、金属导电性等物理化学性质而广受关注。通过LiF和HCl刻蚀Ti3AlC2的Al层, 改变机械剥离强度和方式, 以及离心速率和时间, 可控制备出平均横向尺寸为625 和2562 nm的单层Ti3C2Tx型MXene。借助扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射仪(XRD)对二维Ti3C2Tx进行形貌、结构和成分的表征。使用电化学工作站表征Ti3C2Tx的电化学性能。结果表明: 小片层Ti3C2Tx(625 nm)的质量比电容高达561.9 F/g, 远高于文献报道的石墨烯、碳纳米管和二氧化锰等电极材料; Ti3C2Tx电极在循环测试10 4次后, 其比电容仍保持初始96%的容量。  相似文献   

3.
二维过渡金属碳化物(MXenes)具有良好的电化学性能与辐照稳定性, 其在放射性核素电化学检测领域有潜在应用价值。本研究通过碱活化的方式处理碳化钛型MXene(Ti3C2Tx), 随后将钾插层的Ti3C2Tx(K-Ti3C2Tx)负载到玻碳电极(GCE)上得到K-Ti3C2Tx/GCE修饰电极。采用XRD、SEM、XPS等手段分别对Ti3C2Tx和K-Ti3C2Tx进行分析表征, 并进一步研究了K-Ti3C2Tx/GCE对痕量铀酰离子(UO22+)的电化学检测性能。循环伏安(CV)实验结果表明, 相比于GCE电极, K-Ti3C2Tx/GCE修饰电极对UO22+的电化学响应显著增强。进一步使用差分脉冲伏安法(DPV)扫描, 发现pH=4.0时, K-Ti3C2Tx/GCE修饰电极对UO22+在铀浓度0.5~10 mg/L范围内呈现良好的线性检测关系, 本方法的检测限为0.083 mg/L(S/N=3), 稳定性和重复性好。  相似文献   

4.
通过化学溶液法一步制备锗/MXene复合材料, 在MXene表面均匀负载了锗金属纳米颗粒。采用SEM和TEM对Ge/MXene复合材料进行了微观形貌分析, 探索了复合材料的形成过程, 结果表明, Ge/MXene复合材料是二维结构形貌, 其元素分布均一。用Ge/MXene复合材料制备了电极, 并组装成纽扣电池进行充放电性能测试, 对电池的比容量、倍率、循环稳定性能进行了系统分析。测试结果表明, Ge含量为50%时的电化学性能最佳, 0.2C下第5~100圈的容量稳定在1200 mAh/g, 载量为1 mg/cm 2; 载量提高到2 mg/cm 2时的比容量依然能达到450 mAh/g。  相似文献   

5.
MXene材料是由前过渡金属碳、氮化物组成的无机化合物,二维MXene及其复合材料具有类石墨烯层状结构、高比表面积、优异的导电性和丰富的表面活性位点,近年来在材料领域成为研究热点.本文聚焦二维MXene材料在气体传感器领域的应用前景,从MXene和气敏性能等角度进行了综述,重点对MXene及其(无机/有机)复合材料用作...  相似文献   

6.
MXene是一类新型碳/氮化物二维纳米层状材料,一般是利用化学刻蚀的手段通过选择性刻蚀掉前驱体MAX相中的A原子层而得到.其通式可表示为Mn+1XnTx,其中M代表早期过渡族金属,X代表碳和/或氮,Tx代表MXene在刻蚀过程中产生的附着在其表面的官能团(-OH、-F、=O、等).采用一定的手段将多层MXene剥落,可获得类石墨烯形貌的单层MXene.MXene除了具备传统二维材料的性能外,还兼具良好的导电性、亲水性、透光性、柔韧性以及能量储存性能,在复合材料、润滑剂、环境污染治理、电池、电容器、催化、传感器、抗菌等领域具有潜在的应用价值.文章总结了MXene的制备、结构、性能和应用等方面的最新成果,并展望了其今后的研究方向.  相似文献   

7.
MXene是一类新型碳/氮化物二维纳米层状材料,一般是利用化学刻蚀的手段通过选择性刻蚀掉前驱体MAX相中的A原子层而得到。其通式可表示为M_(n+1)X_nT_x,其中M代表早期过渡族金属,X代表碳和/或氮,T_x代表MXene在刻蚀过程中产生的附着在其表面的官能团(-OH、-F、=O、等)。采用一定的手段将多层MXene剥落,可获得类石墨烯形貌的单层MXene。MXene除了具备传统二维材料的性能外,还兼具良好的导电性、亲水性、透光性、柔韧性以及能量储存性能,在复合材料、润滑剂、环境污染治理、电池、电容器、催化、传感器、抗菌等领域具有潜在的应用价值。文章总结了MXene的制备、结构、性能和应用等方面的最新成果,并展望了其今后的研究方向。  相似文献   

8.
银基电触头在低压开关领域扮演重要角色。作为一种具有良好导电导热性能的新型二维碳化物材料,MXene家族典型代表材料(Ti3C2Tx)在多个领域显示出极大的应用潜力。Ti3C2Tx有望作为一种新型环保银基电触头增强相材料。本研究采用粉末冶金法制备了Ag/Ti3C2Tx复合材料,并对Ti3C2Tx和Ti3AlC2的物相和微观结构进行表征。同时研究了Ti3C2Tx增强Ag基复合材料的综合性能,包括电阻率、显微硬度、机械加工性能、抗拉强度和抗电弧侵蚀性能,并与Ti3AlC2增强Ag基复合材料进行了比较。Ag/Ti3C2Tx的电阻率(30×10 -3 μΩ·m)相对于Ag/Ti3AlC2(42×10 -3 μΩ·m)降低了29%。Ag/Ti3C2Tx硬度适中(64 HV),具有良好的可加工性,作为无毒电触头材料应用前景广阔。Ag/Ti3C2Tx复合材料导电性能的提高主要归因于Ti3C2Tx本身优异的金属性以及由Ti3C2Tx微观结构特征带来的可变形性。由于缺乏Al-Ag相互扩散,Ag/Ti3C2Tx复合材料的拉伸强度(32.77 MPa)明显低于Ag/Ti3AlC2复合材料(145.52 MPa)。正因为缺失Al层,Ag/Ti3C2Tx的抗电弧侵蚀性能也无法与Ag/Ti3AlC2相媲美。尽管Ag/Ti3C2Tx的抗电弧侵蚀性能有待进一步提高,但优异的导电性使其有望替代当下有毒的Ag/CdO电接触材料。该研究结果为开发新型环保电触头材料提供了新的探索方向。  相似文献   

9.
MXene是一种类石墨烯结构的新型二维过渡金属碳化物或碳氮化物,通过氟盐和盐酸或氢氟酸刻蚀前驱体MAX相中的活泼金属元素得到,其化学通式为Mn+1XnT(n=1,2,3…),T表示表面所附着的官能团(-H、-F或-OH)。得益于其表面的官能团,MXene在储能方面应用较为广泛。通过表面改性、离子插层,增加MXene晶面间距,提高离子传输效率,以优化MXene在电化学方面的应用。综述了以Ti3C2为代表的MXene的制备方法、理论研究以及在锂离子电池、锂硫电池、超级电容器等方面的应用研究进展,展望了MXene在电化学领域的应用前景和未来的研究方向。  相似文献   

10.
本文对比了二维过渡金属碳(氮)化合物(MXene)的制备方法(氢氟酸刻蚀法、高温刻蚀法和化学气相沉积法);分析了层间距、表面基团和测试环境对MXene材料电化学储能性能的影响,探讨了其结构与电化学储能性能的关系,揭示了不同基体的物理化学性质、微观结构以及基体组成对MXene基复合材料电化学性能的影响.对MXene目前在储能领域应用上存在的问题及未来的发展方向进行了展望.  相似文献   

11.
MXene是一种新型二维过渡金属碳/氮化物, 具有优异电化学性能的赝电容型超级电容器电极材料。本研究尝试用同步氨化/碳化制备MXene平面多孔电极。以滤纸为多孔平面模板, 通过浸渍-烘干的手段把MXene固定在滤纸的纤维上, 然后在氨气的气氛中热处理, 得到了MXene/C平面多孔复合电极。分析结果表明: MXene纳米片均匀包覆在由滤纸碳化形成的碳纤维上。当浸渍5次时, 在2 mV/s的扫速下测试, 制备出的复合电极的面积比电容达到403 mF/cm 2。在电流密度为10 mA/cm 2下进行恒流充放电循环测试2500次后, 比电容仍然与初始电容几乎相同, 表现出良好的倍率性能和循环稳定性。在不使用高分子粘合剂和金属集流体的情况下, 同步氨化/碳化法制备出的MXene/C平面多孔复合电极表现出优良的电化学性能。  相似文献   

12.
二维过渡金属硫属化合物具有优异的电学和光学特性, 形貌控制及带隙调控对于其在光电子学、光子学、纳米电子学领域中的应用至关重要。研究采用CVD技术在SiO2/Si衬底上生长了垂直排列ReS2纳米片材料, 硒化处理后得到ReS2(1-x)Se2x合金纳米片, 并研究了硒化温度(700、850 和 920℃)及硒化时间(0.5、1和1.5 h)对ReS2(1-x)Se2x合金纳米片形貌及组分的影响。XPS元素定量分析及紫外-可见-近红外吸收光谱研究表明ReS2(1-x)Se2x样品中Se含量可以在x=0(纯ReS2)到x=0.86之间调变, 相应材料的带隙可从1.55 eV (800 nm)调变到1.28 eV (969 nm)。SEM结果显示ReS2(1-x)Se2x纳米片的结构受到硒化温度和硒化时间的影响, 硒化温度升高和硒化时间延长会破坏纳米片的垂直结构。上述结果表明本研究成功合成了垂直排列ReS2(1-x)Se2x合金纳米片, 该材料在电化学催化、功能电子器件和光电子器件方面具有潜在应用价值。  相似文献   

13.
采用固相烧结法, 按化学计量比Ba1-xMgxAl2Si2O8(x=0, 0.05, 0.1, 0.15, 0.3, 0.5)制备样品, 考察不同MgO含量对BaO-Al2O3-SiO2系介电材料晶体结构及微波介电性能的影响。结果表明, MgO可以降低烧结温度, 促进六方相转变为单斜相, 当添加量x≥0.15时, 相转变可以达到100%。当x≤0.15时, 适量的MgO可以有效地促进单斜钡长石晶粒的长大。在0.05≤x≤0.1范围内, 随着MgO含量的增加, 单斜钡长石衍射峰增强, 晶粒尺寸增大, 密度、介电常数与τf均随MgO含量的增加而增大。在x=0.1, 烧结温度为1400℃时, 可获得综合性能相对较好的单斜钡长石, 其介电性能εr=6.44, Q×f=16461 GHz, τf= -30.6×10-6 K-1。  相似文献   

14.
碳化钛作为一种新兴的层状二维材料具有一些独特的物理化学性质, 近年来引起了科研工作者广泛的注意。它是由化学选择性刻蚀的方法获得, 在电化学如锂电池, 超级电容器等领域展现出极好的应用前景。目前研究中碳化钛的电极往往活性物质负载量较低, 导致面容量不佳, 从而限制了其在大规模生产中的应用。本工作受自然界中椴木结构的启发, 利用其多孔道、孔道弯曲度低、导电性好、低价环保等特点, 将碳化钛与椴木活性炭复合, 获得了一种具有高面电容且稳定的超级电容器, 该电容器在2 mV/s的扫速下具有1983 mF/cm 2的面容量, 同时活性材料负载量可以达到17.9 mg/cm 2。本研究为后续利用自然界构型材料与功能材料的复合提供了一定的借鉴。  相似文献   

15.
当前制约钠离子电池发展的主要因素包括较低的能量/功率密度和较差的循环性能, 而在正极材料表面包覆含氧缺陷金属氧化物层, 可以有效提高材料的电子导电率, 保证高振实密度、能量密度和功率密度。本文通过温和的溶剂热反应制备Na3V2(PO4)2F3纳米片前驱体并结合高温煅烧合成Na3V2(PO4)2F3@V2O5-x复合材料。其结构通过XRD、TEM、SEM、XPS和TGA测试进行表征。作为钠离子电池的正极材料, 展现了优异的循环性能和倍率性能。在0.2C倍率下, 首圈放电比容量为123 mAh?g -1, 循环140圈后容量保持在109 mAh?g -1。当电流密度提高至1C, 首圈放电比容量达到72 mAh?g -1, 充放电循环500圈后, 容量保持率高达84%。优异的电化学性能归因于材料表面包覆的具有丰富结构缺陷的无定型层, 有效提高了离子的扩散和电子导电率。此方法将有助于钠离子电池的实际应用。  相似文献   

16.
MXene是一类具备丰富物理化学性质的新型二维过渡金属碳化物, 在储能、催化、复合材料、发光材料等领域都表现出潜在的应用前景。元素掺杂、结构缺陷、表面功能化、外加电场、外加应力等方法是调节二维材料性能的有效手段。作为厚度最小和最轻的含钛MXene材料, Ti2CO2具有间接半导体特性, 本工作研究外加电场、外加应力和电荷态等条件对Ti2CO2电学性能的调控。结果表明:无缺陷Ti2CO2原胞的带隙随着外加电场的增强而变小。在Ti2CO2体系中, 碳空位较易形成。研究发现拉伸应力可以改变含碳空位体系的导电能力, 费米能级附近的能带随着拉伸应力的增大而逐渐平滑。研究还发现电荷态会改变含碳空位2×2×1 Ti2CO2超胞的能带结构, 随着电荷态的增加, 体系费米能级的位置逐渐降低, 且电荷态为+2时, 含碳空位2×2×1 Ti2CO2超胞表现出半导体特性, 带隙类型转变为直接带隙, 带隙值为0.489 eV。  相似文献   

17.
采用传统固相法制备了CaxSr1-xBi2Nb2O9 (x=0、0.10、0.25、0.40)无铅压电陶瓷, 研究了Ca2+掺杂量对其微观结构、电学性能及其高温稳定性的影响。掺入Ca2+并未改变SrBi2Nb2O9陶瓷的晶体结构; 随着Ca2+掺杂量的增加, 陶瓷晶粒由片状向长条状转变; 陶瓷的矫顽场(Ec)下降, 剩余极化强度(Pr)先增大后减小; 陶瓷的居里温度由450℃升高到672℃。当x=0.10时, 陶瓷具有较好的综合性能: 2Pr=14.8 μC/cm2, d33=22 pC/N, Tc=488℃; 当退火温度达到400℃时, 压电常数d33仍达到20 pC/N, 说明该材料具有较好的温度稳定性, 可以在400℃的高温环境中应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号