首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 69 毫秒
1.
针对传统基于像元的分类方法不能满足对高分辨率影像(HRI)进行分类的矛盾,提出基于特征增强技术的面向对象分类方法(FETCOOCA)。并以北京市海淀区的SPOT5影像为例,考虑到影像中植被、水体和建筑物等地物之间的特征差异,对影像中地物的光谱、形状、纹理等信息进行特征增强处理,并结合面向对象的分类方法对其进行分类。最后,对FETCOOCA与传统基于像元的分类方法进行对比分析。结果表明:提出的FETCOOCA明显优于传统分类方法,它可以大幅度提高HRI的分类精度,有效抑制椒盐现象的发生,使分类后的图像含有更为丰富的语义信息。  相似文献   

2.
针对如何提高中低分辨率遥感影像分类精度,该研究以河北省石家庄市Landsat 8 OLI遥感影像为研究对象,对灰度共生矩阵(gray-level co-occurrence matrix,GLCM)纹理与伽博(Gabor)滤波器下的Gist纹理特征进行对比,应用J-M(Jeffries-Matusita)距离可分离性分析GLCM最优纹理特征,并利用最佳指数法(optimum index factor,OIF)获取GLCM与Gist纹理特征的最佳特征组合;其次对面向对象分类的分割尺度进行研究,提出整体最优分割尺度计算方法;最后进行基于纹理特征的面向对象分类识别与精度评价,并与基于原始数据的面向对象分类结果进行对比。研究表明:Gist纹理特征使分类精度有了一定的提高,基于纹理数据的面向对象支持向量机(support vector machine,SVM)分类及面向对象K邻近法(K-nearest neighbor,KNN)分类的总体分类精度(overall accuracy,OA)分别比基于原始数据的2种方法分类精度提高3.67和3.33个百分点,基于纹理的面向对象SVM方法具有最高的精度,OA达到85.67%。不管是基于原始数据还是纹理数据,面向对象分类精度远高于最大似然分类(maximum likelihood classification,MLC)、马氏距离分类(mahalanobis distance classification,MDC)和SVM分类精度,且面向对象分类方法对纹理数据更为敏感。该文提出的基于纹理的面向对象分类方法有效提高了遥感影像分类精度,为区域土地利用/覆盖信息提取提供了有效的途径。  相似文献   

3.
利用遥感技术进行农作物分类,可近实时地获取各种农作物种植的空间分布状况,对于农业生产管理和农业政策制定等都具有十分重要的意义。为避免单时相遥感影像存在同物异谱、同谱异物的现象,提高以往基于MODIS数据提取农作物分布方法的精度,改善传统分类方法存在椒盐噪声及分类效率低的缺点,本文基于MODIS NDVI时间序列曲线,确定作物识别的最佳时段,结合辐射分辨率较高的多时相Landsat8 OLI影像,采用面向对象的分类方法,充分利用物候特征及光谱信息区分作物类别,并在黑龙江省重点产粮区-北安市进行应用,获得北安市各类农作物的空间分布信息。地面调查验证结果表明,该农作物类别识别方法分类效果较好,总体精度达90.7%,kappa系数为0.88。研究结果说明,基于多时相Landsat 8 OLI影像及面向对象分类的方法,并结合MODIS时间序列数据,可以高效、精确地提取农作物信息,应用潜力巨大。  相似文献   

4.
李斌兵  黄磊 《水土保持研究》2013,20(3):115-119,124
基于高分辨率遥感影像,提出了结合高分辨率影像的光谱、地形、几何形态和GLCM纹理信息等特征的切沟半自动面向对象提取方法,建立了一组沿径流方向计算纹理特征空间对比度和相关性的公式。以黄土丘陵沟壑第三副区甘肃天水桥子沟小流域World View-2影像数据为例,分别建立了耕地(山坡地、梯田)、果园、林地、农路、切沟的分类规则和算法,以影像的目视解译结果结合实地调查进行精度评价,分类结果显示,总体分类精度为75.17%,总Kappa系数为0.64,切沟的生产者精度为80%,用户精度为70.59%,取得了令人满意的结果。  相似文献   

5.
针对面向对象土地利用分类存在特征维数过高的问题,提出了一种结合Relief F和粒子群优化算法(particle swarm optimization,PSO)的混合特征选择方法,即首先利用Relief F作为特征预选器滤除相关性小的特征,然后以PSO作为搜索算法,以支持向量机(support vector machine,SVM)的分类精度作为评估函数在剩余特征中选择出最优特征子集。该文以吉林省长春市部分区域为研究区,采用Landsat8遥感影像为数据源,首先对其进行多尺度分割,然后提取影像对象的光谱、纹理、形状和空间关系特征,利用提出的混合特征选择方法选取最优特征子集,最后使用SVM分类器对研究区进行土地利用分类,总体分类精度和Kappa系数分别为85.88%和0.8036,与基于4种其他特征选择方法的土地利用分类结果进行比较,基于Relief F和PSO的混合特征选择方法利用最少的特征获得最高的分类精度,能够有效地用于面向对象土地利用分类。  相似文献   

6.
面向对象的土地利用/覆盖遥感分类方法与流程应用   总被引:4,自引:5,他引:4       下载免费PDF全文
为了进一步提高干旱/半干旱地区土地利用/覆盖分类精度,该文以新疆石河子垦区为研究区,利用NDVI时间序列分析的方法确定了土地利用/覆盖遥感分类最佳时相组合;采用最佳指数因子OIF对参与图像分割的谱段进行选择;选择不同分割参数建立4级分割层次,构建了不同尺度的分类对象;针对其不同特点,分别选择基于知识的模糊分类和基于样本的监督分类方法;建立了面向对象的土地利用/覆盖遥感分类流程。采用地面实测数据对分类效果进行评估,与基于像元的分类方法相比,该文方法能够获取更高的分类精度,可为同类的研究与应用提供借鉴。  相似文献   

7.
以面向对象的遥感影像分类的理论与方法,基于ENVI 5.0、eCongition 8.7和ArcGIS 10.0平台,从遥感尺度问题和决策树分类技术人手,对面向对象分类方法的多尺度分割和多特征分类等关键问题进行了探讨,并应用该方法对玛纳斯河流域的信息进行了提取研究.结果表明,多尺度分割最佳波段权重为0,1,2,2,1,0,1,形状参数和紧致度均为0.7,分割尺度为60,30和10,地物种类可分为林地、草地、水域、耕地、人工表面、冰雪地、盐碱地、其他八大类.分类结果总精度为0.92,Kappa系数为0.91,证明面向对象的分类方法可以有效地对干旱区中尺度分辨率影像进行快速高效的地物信息识别及提取.  相似文献   

8.
结合当前北京市开展的生态清洁小流域建设,尝试利用现有的高分辨率航片,采用基于面向对象的高分辨率影像分类技术和G IS技术来开展生态清洁小流域水土保持现状等本底资料的调查,从而为生态清洁小流域的基础数据库建设、治理措施规划与布局提供基础数据和科学依据。应用实例表明,采用面向对象影像分类技术开展生态清洁小流域现状调查,在方法上、技术上都是可行的,不仅可以提高调查的客观性、准确性和现势性,而且也可以大大提高调查的工作效率,是未来生态清洁小流域调查的可选方法。  相似文献   

9.
为明确基于无人机超高空间分辨率影像的土地利用分类方法,尤其是有效特征和算法的选择,该研究获取吉林省德惠市一农耕区超高分无人机影像,获取区域正射影像图和数字表面模型,计算地形指标,采用面向对象方法进行土地利用分类研究。首先,采用随机森林算法,以光谱特征为基础,依次引入指数、形态、地形、纹理特征,建立5种特征选择方案,分析各类特征对分类效果的影响。其次,以Boruta特征选择算法获取的优化特征集为基础,采用随机森林算法、朴素贝叶斯算法、逻辑回归算法和支持向量机算法分类,分析不同算法的分类效果。结果表明:采用5种特征选择方案分类,引入形态特征时总体精度降低,引入其他特征时总体精度逐渐提高。5种特征共同参与的分类效果最佳,总体精度为98.04%,Kappa系数为0.980。错分主要发生在裸地和宅基地,漏分主要发生在草地、裸地、水渠和道路。错分和漏分主要是因为这几种类型对象具有相似的光谱、形态、纹理特征或相似的分布位置。采用优化特征集分类时,相比其他算法,随机森林算法更擅长处理高维特征集,获得最高的总体精度98.19%,最低的错分和漏分误差,分类效果最佳。借助无人机超高空间分辨率影像提取地形信息、形态信息,可以有效辅助土地利用分类,并能提高传统分类方法精度。  相似文献   

10.
基于GF-1影像的东江流域面向对象土地利用分类   总被引:3,自引:4,他引:3       下载免费PDF全文
针对东江流域地物斑块破碎、湖泊河流众多等因素影响其地物分类精度的问题,该文以GF-1遥感影像为数据源,采用面向对象的分类方法,结合模糊分类和CART决策树分类法获取研究区土地利用分类信息。根据近红外波段均值的模糊范围(480~2 200)选择模糊小于隶属函数对水体与非水体进行区分,近红外波段均值小于480确定为水体,大于2 200确定为非水体;在水体类别中,采用长宽比指数模糊范围(1.53~4.32)调用模糊大于函数对河流与水库进行了区分,长宽比指数小于1.53确定为水库,大于4.32确定为河流;在非水体类别中,采用归一化植被指数NDVI(normalized difference vegetation index)特征值模糊范围(0.21~0.62)调用模糊大于函数区分植被与非植被,NDVI指数小于0.21确定为非植被,大于0.62确定为植被,最后采用面向对象的CART决策树分类法分出河流、水库、园地、林地、耕地、灌草地、未利用地、建设用地。与极大似然分类法、非监督分类法应用到GF-1遥感影像相比,基于面向对象的CART决策树分类方法的效果最好,总体分类精度高达93.27%,Kappa系数高达0.92。该方法可以作为东江流域获取较高土地利用信息的有效方法,为研究流域生态环境变化提供更准确的数据支持。  相似文献   

11.
不透水面是一种重要的城市地物类型,及时准确地获取城市不透水面信息对城市的合理规划、生态环境保护及可持续发展具有重要意义。低空无人机(Unmanned Aerial Vehicle,UAV)作为新型的遥感平台,具有操作灵活、时空分辨率高、受云雾影响小等优点,为中小尺度城市不透水面遥感监测提供了新的技术手段。以无人机可见光影像作为数据源,通过使用面向对象与随机森林算法相结合的方法开展对城市不透水面信息提取研究。首先,根据最佳尺度对影像进行分割并提取分割对象的不同特征,以光谱特征为基础,分别引入指数与地形特征建立方案S1~S4,以光谱、指数和地形特征为基础,分别加入纹理与几何特征构建方案S5~S7,以此来分析不同类型特征对不透水面提取效果的影响;同时,基于优选特征子集(13个)构建方案S8,基于上述8种方案,利用随机森林(Random Forest,RF)算法进行分类并确定最佳方案。然后,通过比较随机森林、支持向量机(Support Vector Machine,SVM)和 K-最邻近法(K-Nearest Neighbors,KNN)算法在最佳方案的特征子集下的分类效果,评价随机森林算法对于不透水面的分类性能。结果表明:地形特征中的归一化数字表面模型(normalized Digital Surface Model,nDSM)对不透水面提取精度的提升作用最大,多个方案通过引入nDSM后分类精度均有较大幅度的提升(22.49~39.67个百分点);基于特征优选子集的S8方案分类精度最高,其总体精度达96.18%,Kappa系数为0.95,可见特征优选能够将高维度特征进行降维和优化,大幅减少特征数的同时还能一定程度提高分类效果;随机森林算法在最优特征子集下的分类效果优于SVM与KNN,总体精度比二者分别提升了1.35和14.18个百分点。可见面向对象和随机森林相结合的方法可有效开展城市不透水面精细化提取。该研究为基于无人机可见光影像的不透水面提取提供了一种新方法,也可为城市其他类别地物监测提供技术参考。  相似文献   

12.
使用无人机拍摄的荔枝图像目标尺寸小、特征信息不足。为了更多、更好地检测到荔枝,该研究提出一种基于多重特征增强与特征融合的SSD(Single Shot Multibox Detector based on Multiple Feature Enhancement and Feature Fusion,MFEFF-SSD)模型。为了减少不必要的计算量,删除原始主干网络Vgg16的最后两个卷积层,并在Conv8和Conv9层使用感受野模块(Receptive Field Block,RFB),提升主干网络的特征提取能力;然后使用高效空间金字塔模块(Efficient Spatial Pyramid Block,ESP),增强浅层特征;提出改进的路径聚合网络(Improved Path Aggregation Network,IPANet)多尺度融合特征,提升荔枝小目标的检测效果;最后在浅层引入通道注意力机制SE(Squeeze and Excitation)模块,进一步提高检测精度。同时,调整先验框的大小和数量,适应荔枝小目标的尺寸。试验结果表明:该研究提出的RFB模块可以提高检测效果;IPANet的平均精确率比FPN(Feature Pyramid Network)略有提高;SE模块的平均精确率比CBAM(Convolutional Block Attention Module)、ECA(Efficient Channel Attention)模块分别提高1.15个百分点和2.12个百分点;ESP模块的平均精确率比ASPP(atrous spatial pyramid pooling)提高2.51个百分点;与SSD、Yolov4-tiny、Faster-RCNN和CenterNet模型相比,MFEFF-SSD模型的平均精确率分别提高30.62、14.58、44.46和15.93个百分点,能够更精准、有效地实现对无人机拍摄的荔枝图像检测,可为小目标农作物的检测开拓思路。  相似文献   

13.
梯田地形具有独特的平面和剖面形态特征,而现有梯田地形分类无法准确反映梯田地形的平面形态特征,导致其难以满足未来构建梯田地形数值模拟模型的需求.以黄土高原旱梯田地形为切入点,对梯田地形的总体特征、平面和剖面形态特征及几何量测特征进行深入研究,提出了基于梯田平面形态特征的梯田地形分类,并在结合现有梯田地形分类的基础上,构建出梯田地形综合数字分类.与传统梯田地形分类相比,该分类综合考虑梯田的总体特征和平面及剖面形态,能更好地反映梯田独特的形态特征和几何量测特征.研究结果为未来构建梯田地形数值模拟模型奠定了坚实基础,对于探讨利用DEM实现梯田地形的有效数字表达与分析具有重要理论意义.  相似文献   

14.
    
Agriculture has been considered an important source of food for humans throughout history. Plant pests cause significant damage to crops and reduce the productivity of global crop yields. Therefore, it is important to identify the plant pest at an earlier stage in order to minimize crop losses and use pesticides optimally. This paper develops the MobileENet deep learning architecture for accurate plant pest identification with less computational effort. The input images are pre-processed, and the features are extracted using a deep convolutional encoder–decoder network (DCEDN). The proposed classification approach solves the problems of over-fitting regularization, batch normalization, and dropout layers. Due to the minimum computing size and factorization process, the classification performance is increased. It extracts discriminatory feature information by eliminating redundant background information. The performance of the proposed approach is evaluated on the IP102 dataset, and the performance is compared with existing deep learning-based approaches. The performance metrics, such as accuracy, precision, recall, and so forth, are considered to evaluate the performance of the proposed plant pest identification approach. The accuracy performance of the proposed approach is improved to 98.83% with less information loss.  相似文献   

15.
面向对象的多时相HJ星影像甘蔗识别方法   总被引:4,自引:1,他引:4       下载免费PDF全文
广西甘蔗种植区域离散,因混杂于多种农作物中,其光谱易受其他作物的影响,故利用单一时相多光谱遥感影像提取甘蔗有一定的困难。针对这一难题,该文首先提出甘蔗最佳识别时段,基于多时相HJ-1A/1B星CCD影像,以广西中部贵港市三区为研究区,通过面向对象分类软件eCognition,利用甘蔗在不同时相影像上的光谱特征:光谱均值、归一化植被指数NDVI和由灰度共生矩阵导出的局部一致性指数GLCM homogeneity,建立决策树逻辑的分类规则集提取甘蔗种植区。结果表明该方法能较精确地进行甘蔗识别,最大程度消除其他干扰因素影响,分类精度为91.3%,kappa系数为0.83,同时也证实了HJ卫星CCD多光谱遥感数据应用于甘蔗识别的有效性。  相似文献   

16.
肖艳  王斌  姜琦刚  闻雅 《农业工程学报》2020,36(16):134-141
为实现PolSAR数据极化信息的充分利用,以进一步改善分类效果,该研究提出了一种基于极化分解和集成学习的PolSAR影像分类方法。该方法首先利用多种极化分解方法从PolSAR影像中提取极化参数;将提取的极化参数组合成一幅多通道影像;然后对多通道影像进行分割和特征提取,分别提取出各目标极化分解方法所对应的特征;并进行特征选择和分类,得到各目标极化分解方法的分类结果;最后利用集成学习技术对各分类结果进行集成。该研究以吉林省长春市部分区域为研究区,Radarsat2影像为数据源,将提出的方法应用于土地覆被分类中,取得了较好的分类效果,总体精度和Kappa系数分别达到了92.49%和0.90。此外,该研究还将提出方法与其他基于多种极化分解的分类方法进行比较,对比方法的总体精度和Kappa系数分别为90.74%和0.88,比提出方法分别低1.75%和0.02,对比结果进一步证明了提出方法的优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号