首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In the present article, we discussed the transient waves caused by a line heat source with a uniform velocity inside a rotating half-space fiber-reinforced thermoelastic media permeated into a uniform magnetic field. The formulation of the problem is applied under the coupled theory (CD), Green-Lindsay (G-L) theory, and Lord-Shulman (L-S) theory. The normal mode analysis is used to obtain expressions for the temperature, displacement components, and thermal stresses. Numerical results are given and illustrated graphically. A comparison is made with the results predicted by three theories in the presence and absence of magnetic field and rotation as well as fiber-reinforced.  相似文献   

2.
The present paper is concerned with the wave propagation in a micropolar thermoelastic solid with distinct two temperatures under the effect of the magnetic field in the presence of the gravity field and an internal heat source. The formulation of the problem is applied in the context of the three-phase-lag model and Green-Naghdi theory without dissipation. The medium is a homogeneous isotropic thermoelastic in the half-space. The exact expressions of the considered variables are obtained by using normal mode analysis. Comparisons are made with the results in the two theories in the absence and presence of the magnetic field as well as the two-temperature parameter. A comparison is also made in the two theories for different values of an internal heat source.  相似文献   

3.
In the present paper, the coupled theory, Lord–?hulman theory, and Green–Lindsay theory are introduced to study the influence of a magnetic field on the 2-D problem of a fiber-reinforced thermoelastic. These theories are also applied to study the influence of reinforcement on the total deformation of an infinite space weakened by a finite linear opening Mode-I crack. The material is homogeneous and an isotropic elastic half-space. The crack is subjected to a prescribed temperature and stress distribution. Normal mode analysis is used to solve the problem of a Mode-I crack. Numerical results for the temperature, the displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field. A comparison between the three theories is also made for different depths.  相似文献   

4.
A new fiber-reinforced model has been constructed by taking into account the deformation of a generalized thermoelastic medium with internal heat source. A general model of the equations of the formulation in the context of the Lord–Shulman theory that includes one relaxation time and Green–Lindsay theory with two relaxation times, as well as the classical dynamical coupled theory, is applied to study the influence of gravity and reinforcement on the total deformation of a thermoelastic medium. The normal mode analysis is used to obtain the exact expressions for the physical quantities. The variations of the considered variables with the horizontal distance are illustrated graphically. Comparisons are made with the results in the three theories in the presence and absence of reinforcement, gravity, and moving internal heat source.  相似文献   

5.
The problem of the generalized thermoelastic medium for three different theories under the effect of a gravitational field is investigated. The Lord- Shulman, Green-Naghdi III, three-phase-lag theories are discussed with twotemperature. The normal mode analysis is used to obtain the analytical expressions of the displacement components, force stress, thermodynamic temperature and conductive temperature. The numerical results are given and presented graphically, when the thermal force is applied. Comparisons are made with the results predicted by three-phase-lag model, Green-Naghdi III and Lord-Shulman theories in the presence and absence of gravity as well as two temperature.  相似文献   

6.
In the present paper, the three-phase-lag model and Green–Naghdi theory without energy dissipation are used to study the effect of a mechanical force and a rotation on the wave propagation in a two-temperature fiber-reinforced thermoelastic problem for a medium with an internal heat source that is moving with a constant speed. The methodology applied here is the use of the normal mode analysis to solve the problem of a thermal shock problem to obtain the exact expressions of the displacement components, force stresses, thermal temperature, and conductivity temperature. Numerical results for the considered variables are given and illustrated graphically in the absence and presence of a rotation as well as a mechanical force. A comparison is made with the results in the context of the two theories in the absence and presence of a moving internal heat source.  相似文献   

7.
In this article, the coupled theory, Lord–Shulman theory, and Green–Lindsay (GL) theory are used to study the influence of a magnetic field on a fiber-reinforced thermoelastic half-space. Normal mode analysis is used to solve a thermal shock problem. Numerical results for the temperature, displacement components, and stress components are given and illustrated graphically. A comparison is made between the coupled and GL theories in the absence and presence of a magnetic field and reinforcement.  相似文献   

8.
The problem of the generalized thermoelastic medium for three different theories under the effect of a gravity field is investigated. The Lord–Shulman (L–S), Green–Lindsay (G–L), and classical-coupled (CD) theories are discussed. The modulus of the elasticity is given as a linear function of the reference temperature. The exact expressions for the displacement components, temperature, and stress components are obtained by using normal mode analysis. Numerical results for the field quantities are given in the physical domain and illustrated graphically in the absence and presence of gravity. A comparison also is made between the three theories for the results with and without a temperature dependence.  相似文献   

9.
The present article is concerned with the investigation of disturbances in a homogeneous transversely isotropic thermoelastic rotating medium with two temperatures, in the presence of the combined effects of Hall currents and magnetic field. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi theories of type-II and type-III. Laplace and Fourier transform techniques are applied to solve the problem. The analytical expressions of displacements, stress components, temperature change, and current density components are obtained in the transformed domain. A numerical inversion technique has been applied to obtain the results in the physical domain. Numerical simulated results are depicted graphically to show the effect of Hall current and two temperatures on resulting quantities. Some special cases are also deduced from the present investigation.  相似文献   

10.
The present paper aims to explore how the magnetic field, ramp parameter, and rotation affect a generalized micropolar thermoelastic medium that is standardized isotropic within the half-space. By employing normal mode analysis and Lame’s potential theory, the authors could express analytically the components of displacement, stress, couple stress, and temperature field in the physical domain. They calculated such manners of expression numerically and plotted the matching graphs to highlight and make comparisons with theoretical findings. The highlights of the paper cover the impacts of various parameters on the rotating micropolar thermoelastic half-space. Nevertheless, the non-dimensional temperature is not affected by the rotation and the magnetic field. Specific attention is paid to studying the impact of the magnetic field, rotation, and ramp parameter of the distribution of temperature, displacement, stress, and couple stress. The study highlighted the significant impact of the rotation, magnetic field, and ramp parameter on the micropolar thermoelastic medium. In conclusion, graphical presentations were provided to evaluate the impacts of different parameters on the propagation of plane waves in thermoelastic media of different nature. The study may help the designers and engineers develop a structural control system in several applied fields.  相似文献   

11.
基于广义热弹性理论,研究了热和电可导的旋转半无限大体在其表面受随时间变化的热作用的广义电磁热弹性耦合的二维问题。半无限大体置于恒定的磁场中,受热作用产生膨胀变形,由于外加磁场的作用,介质中产生了感应的电场和感应的磁场。该文建立了电磁热弹性耦合的控制方程,利用正则模态法求解,得到了问题的解析解,并给出了各物理量的分布规律。可以看出,介质中呈现出电磁热弹耦合效应,由于旋转,位移和应力的幅值有很明显的降低,而旋转对温度和感应的磁场的影响不大。  相似文献   

12.
The present article is aimed at studying the effect of gravity on the general model of the equations of generalized thermo-microstretch for a homogeneous isotropic elastic half-space solid rotating about the fixed axis of rotation and whose surface is subjected to a Mode-I crack problem considered. The problem is in the context of the Green and Naghdi theory (GN). The normal mode analysis is used to obtain the exact expressions for the displacement components, force stresses, temperature, couple stresses, and microstress distribution. The variations of the considered variables perpendicular to the axis of rotation are illustrated graphically. Comparisons are made with the results in the presence and absence of gravity and rotational frequency of a particular case for the generalized micropolar thermoelasticity elastic medium (without microstretch constants) between the two types (II, III).  相似文献   

13.
A new model of the equations of generalized thermoviscoelasticity for a thermally, isotropic and electrically conducting half-space solid whose surface is subjected to a thermal shock is given. The formulation is applied to the generalized thermoelasticity based on the Green and Naghdi (GN) theory under the effect of rotation, where there is an initial magnetic field parallel to the plane boundary of the half-space. The medium is deformed because of thermal shock and due to the application of the magnetic field, it results in induced magnetic and electric fields in the medium. The normal mode analysis is used to obtain the expressions for the variables considered. The distributions of temperature, displacement, stress, induced magnetic and electric fields are represented graphically. Comparisons are made with the results predicted by the types II and III in the presence and absence of rotation.  相似文献   

14.
Using micropolar generalized thermoviscoelastic theories, problems of reflection and refraction of magneto-thermoeviscoelastic waves at the interface between two viscoelastic media are studied when a uniform magnetic field permeates the media. Coefficient ratios of reflection and refraction are obtained using continuous boundary conditions. Some special cases are considered, i.e., the absence of micropolar and viscous effects. By numerical calculations, variations of the amplitude ratios of reflection and refraction coefficients with the angle of incidence are shown graphically for incident rotational and dilatational waves at the interface between two media (one medium is aluminium-epoxy micropolar iscoelastic material, and the other is magnesium crystal micropolar viscoelastic material). Comparing the generalized thermoelastic theories developed by Lord and Shulman (LS) and by Green and Lindsay (GL) in this paper to conventional dynamics (CD) theory the effects of a magnetic field and viscosity are shown numerically in this paper.  相似文献   

15.
In this article, the micropolar mixture theory for porous media is generalized in the context of generalized L-S theory and classical C-T theory of thermoelasticity. The thermoelastic problem for a micropolar mixture of porous media is investigated in the context of the generalized micropolar mixture theory for porous media. The surface of a semi-infinite porous media is subjected to a zonal time-dependent thermal shock. The problem is solved by using the finite element method. The results, including the temperature, stresses, displacements, and microrotation are presented graphically. Comparisons are made between the results obtained by using two theories. The fluid constituting the mixture has a significant influence on the microrotation but a very slight influence on other responses.  相似文献   

16.
The two-dimensional problem of expanding ring load in a modified couple stress theory of thermoelastic diffusion with heat sources in time and frequency domains is investigated. The mathematical formulation prepared for thermoelastic diffusion solids with one and two relaxation times using Laplace and Hankel transforms. The displacements, stress components, temperature change, and chemical potential are obtained in a transformed domain. Numerical computation is performed for these quantities and the resulting quantities are shown graphically for the time and frequency domains. Comparisons are made with the results predicted by the two theories and different values of time and frequency. Particular cases of interest are also deduced.  相似文献   

17.
This investigation is aimed to study the two dimensional problem of thermoelastic medium with voids under the effect of the gravity. The modulus of elasticity is taken as a linear function of the reference temperature and employing the two-temperature generalized thermoelasticity. The problem is studied in the context of Green-Naghdi (G-N) theory of types II and III. The normal mode analysis method is used to obtain the exact expressions for the physical quantities which have been shown graphically by comparison between two types of the (G-N) theory in the presence and the absence of the gravity, the temperature dependent properties and the two-temperature effect.  相似文献   

18.
In this article, the Lord–Shulman (L–S) theory with one relaxation time and coupled theory are applied to study the influence of reinforcement on the total deformation of a rotating thermoelastic half-space and the interaction with each other. The problem of a thermal shock has been solved numerically using normal mode analysis. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically for both L–S and coupled theories.  相似文献   

19.
The present article is concerned with the investigation of the propagation of shear waves in a nonhomogeneous anisotropic incompressible medium under the effect of the electromagnetic field, gravity field, rotation, and initial stress taking into account a comparison between presence and absence of magnetic field, initial stress, and rotation. Analytical analysis reveals that the velocity of propagation of the shear waves depends upon the direction of propagation, the anisotropy, magnetic field, rotation, gravity field, nonhomogeneity of the medium, and the initial stress. The frequency equation that determines the velocity of the shear waves has been obtained. Some special cases are also deduced from the present investigation. In fact, these equations are an agreement with the corresponding classical results when the medium is isotropic. Numerical results have been given and illustrated graphically in each case considered. The results indicate that the effects of gravity field, initial stress, magnetic field, electric field, anisotropy, and rotation are very pronounced. Also, the absence of initial stress, magnetic field, and rotation tends to increasing of the S-waves velocity compared with presence of them.  相似文献   

20.
The propagation of thermoelastic waves in a homogeneous, isotropic elastic semi-infinite space is subjected to rotation and initial stress, which is at temperature T0 - initially, and whose boundary surface is subjected to heat source and load moving with finite velocity. Temperature and stress distribution occurring due to heating or cooling and have been determined using certain boundary conditions. Numerical results have been given and illustrated graphically in each case considered. Comparison is made with the results predicted by the theory of thermoelasticity in the absence of rotation and initial stress. The results indicate that the effect of the rotation and initial stress is very pronounced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号