首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 446 毫秒
1.
离心泵浮动叶轮轴向间隙的液体流动分析及轴向力计算   总被引:4,自引:4,他引:0  
为了研究浮动叶轮轴向间隙变化对其液体泄漏量及压力、液体作用在不锈钢盘上轴向力的影响规律,将径向和轴向的间隙液体流动分别简化为平行平板间粘性层流运动和轴对称二维粘性层流运动,基于液体通过径向和轴向的间隙泄漏量相等,推导出了计算轴向间隙的液体泄漏量及压力、液体作用在不锈钢盘上轴向力的数学表达式。并通过设计实例计算,绘制出了轴向间隙的液体泄漏量和液体作用在不锈钢盘上轴向力与轴向间隙变化的关系曲线,从控制一定泄漏量并减少轴向力的角度出发,分析得出轴向间隙取0.4~0.8mm较为适宜。并在平衡腔内不安装不锈钢盘和石墨盘条件下,计算出了平衡腔内液体作用在叶轮上轴向力。通过比较分析,浮动叶轮有明显减少轴向力的效果。  相似文献   

2.
针对离心泵上叶轮平衡孔的实际液体泄漏量难以测量的问题,设计了通过调节平衡腔液体压力来测量平衡孔液体泄漏量的试验装置,在平衡孔直径4、6、8、11 mm条件下对泵性能、平衡孔液体泄漏量和平衡腔液体压力进行了测试及分析,获得了不同直径平衡孔下泵的性能曲线、平衡孔泄漏量系数和轴向力系数与比面积的关系曲线。试验结果表明:加大叶轮平衡孔直径会使泵的扬程降低、输入功率增大和效率降低;平衡孔液体泄漏量系数与比面积关系曲线有明显的规律性,其随着比面积增大而减小,且扬程系数对其有较大的影响;轴向力系数曲线是非线性曲线,在比面积小于2.5时,轴向力系数随比面积增大而急剧减小;比面积大于等于2.5小于等于4.5时,轴向力系数曲线趋于平坦,其均值为0.112;比面积大于4.5时,轴向力系数曲线几乎与横坐标平行,其均值为0.067。该研究为较精确计算平衡孔液体泄漏量与平衡腔区域的轴向力提供了参考。  相似文献   

3.
多级离心泵轴向力平衡装置的设计与分析   总被引:2,自引:0,他引:2  
可靠的轴向力平衡装置是高压多级离心泵实现平稳可靠运行的重要机构。针对反渗透海水淡化高压泵对结构和运行可靠性的特殊要求,设计了一种用于节段式多级离心泵的新型轴向力平衡装置。基于计算流体力学(CFD)方法研究了平衡装置内部的流场结构及其轴向力平衡机理,分析了不同轴向间隙、径向间隙以及滑动轴承长径比条件下的轴向力平衡特性。结果表明,不同进出口压差条件下,滑动轴承间隙内流动结构存在明显区别,轴承支撑机理发生变化;平衡力和相对泄漏量随轴向、径向间隙的增大呈非线性增大,平衡力随长径比增大近似呈线性增大,相对泄漏量随长径比增大近似呈线性减小。对径向、轴向间隙和长径比进行各种组合分析计算,得到轴向间隙0.2 mm、径向间隙0.3 mm、长径比为1的结构优化的新型机构,该机构既可以很好地平衡轴向力,又提高了多级泵的可靠性。  相似文献   

4.
考虑轴向间隙影响的挖泥泵轴向力数值分析   总被引:2,自引:2,他引:0  
转子所受的轴向力是关系到离心泵运行稳定性的重要问题,轴向力的大小和方向与离心泵的水力设计、结构设计中的许多参数都有相关性,其中叶轮盖板与蜗壳泵盖之间的轴向间隙是关键影响因素之一。为了量化地探究不同流量下轴向力特性与轴向间隙尺寸之间的关系,该文基于雷诺时均方程(Reynaolds-averaged Navier-Stokes equations,RANS),采用剪切应力传输(Shear Stress Transport)模型,即SST k-ω湍流模型,对一个前盖板含有后弯式副叶片的离心式挖泥泵进行了全流道数值模拟。考虑侧腔流域的多相位定常流动数值模拟得到了与试验测量结果非常吻合的外特性计算结果,各性能参数的计算误差均在5%以内。对该泵在3种轴向间隙下的外特性及轴向力变化规律进行了计算分析,结果表明:随前间隙的增大,泵的效率明显下降,扬程有不同程度的降低,轴功率变化不大;前、后盖板外表面所受轴向力随轴向间隙和流量的改变均有不同程度的变化,而叶轮内流道所受轴向力则基本不变,可视为定值;后盖板所受轴向力的绝对值最大,对总轴向力的方向及变化规律起着决定性作用,叶轮内流道所受轴向力的绝对值最小。随着前间隙的增大,前后盖板上的压力分布越来越均匀,而前后盖板上的速度沿径向均匀分布,基本不受轴向间隙变化影响。因此,在离心泵的水力设计中应综合考虑外特性、轴向力及加工成本,尽量减小前轴向间隙尺寸。本研究可为离心泵的优化设计提供参考。  相似文献   

5.
离心泵平衡腔液体压力的计算与验证   总被引:2,自引:1,他引:1  
针对开平衡孔双密封环叶轮离心泵的平衡腔液体压力计算问题,基于液体通过叶轮平衡孔和后密封环间隙的泄漏量相等,引入了压力系数p和比面积k2个无因特征参数,推导出了平衡腔液体压力计算模型,其关系曲线为p= f (k )的无因次曲线,并给出了待定系数 a、b 的计算方法。在3BA-6泵上,取与计算相同的叶轮平衡孔直径进行了试验验证。结果表明,在泵设计工况下平衡腔液体压力的试验与理论无因次曲线较为一致,验证了平衡腔液体压力计算模型的正确性与可行性。该研究可为开平衡孔双密封环叶轮离心泵轴向力计算提供基础理论。  相似文献   

6.
不同叶顶间隙对斜流泵性能影响的数值分析   总被引:4,自引:3,他引:1  
斜流泵具有高效,启动特性好,运行工况宽等特点。目前斜流泵设计时,无法定量评估叶顶间隙对性能影响的敏感性。为了揭示不同叶顶间隙值对斜流泵内部流场和性能的影响,给定叶顶间隙选取的范围。分别选取无叶顶间隙和叶顶间隙分别为0.5,1.0,1.5 mm共4种设计方案的斜流泵为对象,基于剪切压力传输模型(shear stress transport,SST k-ω)湍流模型,SIMPLEC算法与块结构化网格,对斜流泵内部流场进行数值模拟和试验验证。结果表明,叶顶间隙为0.5 mm时,可以有效抑制斜流泵的扬程-流量正斜率特性,此时斜流泵的效率值最高;无叶顶间隙时,斜流泵扬程-流量正斜率特性较为明显;叶顶间隙为1 mm时,数值模拟与试验结果吻合较好,SST k-ω模型可较好模拟斜流泵叶顶间隙区流动特征,性能预估结果具有一定的可信度。在小流量工况下,叶顶间隙为0.5 mm可有效抑制斜流泵的正斜率不稳定特性。小叶顶间隙0.5mm时,斜流泵水力性能最优;叶顶间隙增大时,叶顶泄漏流动逐渐显著,叶轮出口近壁区轴面流速和涡量分布规律显著变化,表明叶顶间隙直接影响叶轮轴面速度分布规律和叶片负荷分布规律,由于受壁面摩擦阻力和液体黏滞阻力的影响,叶轮轮毂和叶顶间隙侧的叶轮轴面速度较小;叶顶间隙增大时,叶轮轮毂和叶顶间隙侧叶片负荷急剧衰减,影响叶片的做功能力。同时,叶顶泄漏流动区域与叶片主流区域的掺混效应,使叶片轮缘的低速区扩展到叶轮流道内部的主流区域,引起叶轮流道内部主流流动的堵塞效应,产生二次流动、漩涡等流动不稳定现象。上述研究结果,揭示了叶顶间隙对斜流泵内部流场和性能的影响机理,为斜流泵叶顶间隙的选择提供了理论依据。  相似文献   

7.
不同口环间隙离心泵性能及水力激励特性分析及试验   总被引:2,自引:1,他引:1  
为进一步研究改变口环间隙所产生的影响,该文通过改变口环间隙大小,采用数值计算与试验相结合的方法,研究了离心泵内叶轮所受径向力以及压力脉动的变化。分别采用0.25、0.5以及0.75 mm的口环间隙,进行数值计算和试验。通过对叶轮外表面的压力场求解和分析,得到不同口环间隙对叶轮所受径向力的影响,通过试验测得的各监测点的压力脉动数据进行分析。结果表明:模拟所得扬程与试验结果较为吻合。叶频所对应的压力脉动幅值在前腔进口处,口环间隙为0.5 mm的方案约为0.25 mm方案的3.1倍,在叶轮出口处约为1.3倍;口环一周的平均压力脉动在0.75 mm时最小,此时约为0.5 mm方案的0.81倍;叶轮进口及其上游的压力脉动以0.75 mm方案最小,约为其他2个方案的0.67倍,说明口环间隙为0.5 mm时离心泵前腔及进口处的压力脉动最大。叶轮所受径向力随着口环间隙的改变呈现非线性变化,小流量及设计工况时0.75 mm方案的径向力最小,设计工况时0.25 mm方案的径向力最小。通过研究不同口环间隙所诱导的压力脉动及径向力的变化,对离心泵的传统设计进行了一定的补充,并且对口环的设计提供了参考。  相似文献   

8.
为了研究侧流道泵叶轮周围间隙质量流量交换规律,该文利用数值计算方法研究了侧流道泵在最高效率工况点下叶轮间隙处的流动规律,具体分析了其脉动扬程、交换质量流量、间隙处压力脉动情况、轴向速度变化等。结果表明,每旋转一个叶轮流道(18°),扬程出现一次完整的波动周期,每个周期内扬程最大值与最小值相差0.07 m左右;间隙外缘监测点的瞬时压力值明显大于其他4个监测点,顶部监测点压力值最大,在整个周期内的平均压力值大约是最小压力监测点的2.8倍;右侧间隙靠近外缘处的流体交换最激烈,该处速度绝对值最大;流体主要是在右侧间隙外缘大约0.8~1倍间隙半径处向侧流道流入,在0.53~0.8倍间隙半径处从侧流道流出至叶轮中;净交换流曲线近似呈三角函数图像变化,交替出现减小增大反复趋势,并且净交换流的波动导致侧流道泵扬程曲线的波动。该研究可为进一步提高侧流道泵的水力性能提供理论依据。  相似文献   

9.
斜流泵叶轮水力径向力的数值模拟与试验验证   总被引:2,自引:4,他引:2  
该文采用数值分析法研究了斜流泵叶轮的水力径向力变化规律,通过数值模拟准确地预测了斜流泵的水力性能,扬程预测误差在4.4%以内。通过数值分析获得了斜流泵叶轮的瞬态水力径向力数据,均匀进口条件下,叶轮的瞬态水力径向力均值几乎为零。对瞬态水力径向力进行傅里叶分析,获得其在频域内的分布,结果显示,当工况从0.6倍设计流量点变至0.4倍设计流量点时,1倍和4倍轴频下的径向力突然增大,叶轮的水力不平衡和动静干涉中的叶片通过激励增强了上述频率下的水力径向力数值。流场分析显示,在小流量工况时,叶轮与导叶体之间的回流涡旋完全占据了泵内流道空间。进一步的压力脉动分析证实,在小流量工况下,动静干涉中的叶片通过激励显著增大了叶轮与导叶之间测试点的压力脉动幅值。  相似文献   

10.
为改善筒袋泵水动力性能,基于SST k-ω湍流模型,对立式筒袋泵首级叶轮进行三维非定常数值模拟,采用时-频域数据处理法,对各个监测点的压力脉动进行分析,主要研究了同一叶轮模型下蜗壳不同截面的压力脉动情况及不同交错角对离心泵内压力脉动和径向力的影响。结果表明:在三隔舌三通道蜗壳内,每隔120°压力脉动情况相似;随着交错角度的增加,距离隔舌较近且顺着叶片旋转方向的监测点压力脉动下降最多,压力脉动标准差下降了85%以上;叶轮所受径向力最多下降了60%;叶片交错后液体在轴向方向上会更容易产生流动,导致流动损失但有助于平稳蜗壳内的压力。综上所述,采用交错叶片有助于提高筒袋泵水动力性能。该研究为交错叶片结构在筒袋泵中的应用提供了参考。  相似文献   

11.
固液两相流条件下半开式叶轮离心泵中颗粒冲击、泄漏涡发展和颗粒轨迹之间存在紧密交互作用,导致过流部件的磨损行为复杂多变。该研究结合双向耦合欧拉-拉格朗日方法和颗粒磨损Finnie模型,对不同颗粒体积浓度下半开式叶轮离心泵固液两相流场进行求解,分析了颗粒体积浓度对泄漏涡结构特征、颗粒运移轨迹和磨损特性的影响,揭示了颗粒体积浓度、叶顶间隙泄漏涡和过流部件表面磨损规律的关联机制。结果表明:随着颗粒体积浓度的增加,颗粒的频繁撞击加剧了叶片压力面进水边和后盖板磨损程度,叶片吸力面出水边的磨损范围向进水边方向延伸;颗粒体积浓度小于1%时,颗粒的轴向运动和叶顶间隙泄漏涡的阻碍作用导致颗粒易与叶片前缘靠近叶根处和吸力面出水边靠近叶顶的区域发生撞击,诱发严重磨损,且呈现点状磨损;当颗粒体积浓度大于3%时,叶轮后盖板的整体磨损强度大于叶片,颗粒体积浓度的增加造成流入叶顶间隙层的颗粒数增加,颗粒对叶顶间隙泄漏涡的冲击导致涡流的破碎、分离、再融合,加剧不稳定流动,泵的扬程和效率均明显下降。该研究可为固液两相半开式叶轮离心泵优化设计和安全稳定运行提供理论参考。  相似文献   

12.
以一台比转速为70的前伸式扭曲双叶片污水泵为研究对象,采用PIV(particle image velocimetry)技术对双叶片污水泵进行内部流场测量,分析了该泵在不同流量工况下(Q/Qdes=0.4、0.6、0.8、1、1.2、1.4)叶轮内部流场的相对速度分布,研究了轴向旋涡和低速区随流量变化的形态特性,发现在流道中部靠近叶片工作面上存在低速区及与叶轮旋转方向相反的轴向旋涡,且随着流量的增大,低速区与轴向旋涡逐渐减小;引入少叶片数离心泵内部流动理论,揭示了低速区和轴向旋涡存在和发展的内在机理。分析了在流量Q/Qdes=0.6时叶轮和蜗壳不同相对位置的相对速度场分布,研究了叶轮和蜗壳之间动静干涉作用对轴向旋涡的影响,发现当轴向旋涡经过蜗壳隔舌时,其与叶轮之间的干涉作用使得轴向旋涡向下游偏移。研究结果对前伸式扭曲双叶片污水泵的内部流动规律研究具有重要参考价值。  相似文献   

13.
螺旋离心泵内回流涡空化特性   总被引:1,自引:4,他引:1  
为了研究回流涡空化特性,对一台螺旋离心泵内部的空化流动进行了可视化研究,在一定的工况下该泵内部发生了回流涡空化,捕捉到了不同流量下螺旋离心泵内部回流涡空化形态,发现回流漩涡空化中存在2个旋转的空化云,并且随着流量的减小,回流涡空化云体积逐渐减小;对该泵进行了数值模拟,发现随着流量的减小,泵进口外部形成的回流区域变小,从而导致回流涡空化云体积逐渐减小。该文对螺旋离心泵内回流涡空化体积演变机理的深入研究提供了参考。  相似文献   

14.
为分析叶片安放角对轴流泵马鞍区工况运行特性的影响,以比转速822的轴流泵为研究模型,试验测试了不同叶片安放角下的运行特性。研究表明:随着叶片安放角的增大,模型泵最优工况处的扬程、流量和效率均逐渐增大,-4°到+4°的增幅分别为10.4%,26.7%和0.87%;不同安放角下,泵扬程曲线均存在明显的马鞍区;随着叶片安放角的增大,试验泵马鞍区的绝对位置向右上方偏移,但相对位置仍主要位于0.5QBEP~0.6QBEP(QBEP为最高效率点对应的额定流量),且均在0.55QBEP时扬程达到最小值;随着叶片安放角的减小,马鞍区内相对扬程在逐渐增大,马鞍区驼峰特性有所改善;随着叶片安放角的增大,各个安放角下马鞍区范围内的压力脉动较最优工况下更剧烈;叶轮进口压力脉动主频为叶片通过频率,泵出口处压力脉动主要受导叶影响,随流量减小逐渐向高频移动;随着叶片安放角的增大,叶轮进口和泵出口处主频处的压力脉动幅值均逐渐增大,在叶轮进口处,0.6QBEP和0.55QBEP时压力脉动幅值最大增幅分别达1.78和1.65倍,在泵出口处,正安放角下压力脉动幅值相对负角度有所增大;内流分析表明小流量工况下叶轮进口存在回流现象,叶轮出口靠近轮毂处有明显旋涡,导致小流量下压力脉动幅值增大。  相似文献   

15.
离心泵进水管路通常布置阀门供检修时切断水流,这会导致离心泵入流畸变。该研究旨在分析泵前检修阀所诱发的非定常尾迹特征及其对大流量工况离心泵运行特性的影响机理。试验对比了均匀来流和畸变来流条件下离心泵的外特性,数值模拟研究了阀板尾迹涡的流动特征及其对离心泵非稳态内流场的影响,分析了阀板尾迹涡诱发的叶轮径向力。结果表明:两种来流条件下数值模拟与试验得到的离心泵外特性误差在5%以内;对离心泵性能产生主要影响的尾迹涡主要来自阀门阀板一侧的边界层分离与卷吸,入流畸变导致大流量工况下离心泵效率相较于均匀入流下降9.15%,扬程降低1.2 m;阀板尾迹在离心泵入口产生1.9倍转频的脉动频率;尾迹涡的周期性入流导致两个叶片前缘的最大相对液流角由30°分别增大至43°和39°,这两个叶片的压力面脱流加剧,产生逐渐向下游耗散的失速团,叶片承受2倍转频的非稳态激振力;尾迹涡的周期性吸入导致叶轮上的时均径向力增大至均匀入流的4.5倍左右,最大径向力达到均匀入流的7倍左右,径向力矢量发生偏移,离心泵断轴风险加剧。研究结果可为工业现场中离心泵运行稳定性的改善提供理论依据。  相似文献   

16.
导叶式混流泵多工况内部流场的PIV测量   总被引:2,自引:2,他引:0  
为研究不同流量工况下混流泵内部流动特性,该文基于粒子图像测速技术(particle image velocimetry)对0.8、1.0、1.2倍流量工况下混流泵的内部流场进行试验研究,测量获得了混流泵叶轮进口轴截面、叶轮与导叶间隙和导叶内部流场的速度场分布,分析了流量变化对混流泵内部流动的影响。研究结果表明,外特性试验重复性较好,试验结果较为可靠。3个工况下混流泵叶轮进口流场的速度分布趋势基本一致,进口的来流基本沿着轴线方向;随着流量增加,叶轮进口速度不断增大,最大速度达到7.49 m/s,从轮毂到轮缘高速区域速度梯度更为明显,速度等值线分布逐渐形成以左上角为圆心,不断向周围递减的趋势。受动静干涉作用影响,叶轮与导叶间隙流场速度分布较为紊乱,在导叶进口边轮毂附近形成逆时针方向旋涡,诱使叶轮出口流体向外缘侧偏转;随着流量增加,逆向旋涡明显减小,内部流动更趋于平稳。动静干涉效应进一步影响导叶进口流场并形成明显的旋涡结构,造成流道堵塞;在导叶出口由于环形蜗室的影响形成大尺度旋涡结构;随着流量增大,导叶外缘高速区向下游移动,导叶进出口的旋涡结构逐渐消失,流动损失减小。研究成果为揭示混流泵内部流动特性和优化混流泵设计提供参考。  相似文献   

17.
泵轮轴向振动条件下高速液力耦合器特性   总被引:1,自引:1,他引:0  
针对泵轮轴向振动条件下高速液力耦合器特性问题,基于RNG k-ε模型、流体体积法(volume of fluid,VOF)两相流模型、动网格技术、压力隐式算子分裂(pressure-implicit with splitting of operators,PISO)算法和变时间步长法对液力耦合器泵轮在轴向振动条件下的内流场进行数值模拟,通过试验完成对模型的准确性验证。分析液力耦合器流道内部两相流动规律以及受力特性,结果表明:与径向振动相比,相同振幅条件下的轴向振动对循环圆内流量脉动和泵轮、涡轮转矩影响较大;额定转速越高,其泵轮、涡轮转矩脉动幅值、轴向力波动范围越大;振动频率越大,泵轮、涡轮转矩偏差越大;轴向振动幅值越大,泵轮涡轮转矩波动范围越大。从减小转矩波动范围和轴向力的角度控制轴向窜动值不应超过0.04 mm较为合适。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号