首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一种基于梯度的健壮的指纹方向场估计算法   总被引:1,自引:0,他引:1  
作为指纹的全局特征,指纹方向场在自动指纹识别系统中发挥了非常重要的作用.提出了一种基于梯度的健壮的指纹方向场估计算法,新算法首先归一化点梯度向量并计算块梯度向量及相应的块一致性;然后估计噪声区域;最后采用基于迭代的方法,重新估计所有块梯度向量并将梯度向量场转化为方向场.实验结果表明,与已有基于梯度的指纹方向场估计算法相比,新算法具有更高的准确性及抗噪性能,并能较好地估计大块噪声内的方向场,是一种较为健壮的指纹方向场估计算法.  相似文献   

2.
This paper proposes a novel scrolling-text detection method that uses spatiotemporal directional coherence for frame rate up-conversion. Spatiotemporal directional coherence is defined as the coherence level of the spatiotemporal gradient distribution in consecutive frames. Existing scrolling-text detection methods usually detect text using the motion vectors of an image or the distributions of gradient components. The number of motion vectors to determine the scrolling-text decreases at the start and end points of the frame boundary. Therefore, they have difficulty accurately detecting the scrolling text from the start or end points of a frame boundary. The distributions of gradient components can be generated by non-scrolling-text components and they cannot consider the temporal information of consecutive frames, so they may erroneously detect non-scrolling-text regions as the scrolling-text. Unlike the previous methods, which are vulnerable to the presence of texture and noise, the core idea of the proposed method is to use the spatiotemporal directional coherence of the gradient components in the consecutive frames to detect the regions with a dominant edge orientation component for generation of the scrolling-text map and use bit codes from the luminance values to analyze the diversity of luminance patterns for refinement process. With these, the proposed method can further improve the detection accuracy compared to the benchmark methods. The experimental results showed that the proposed method enhanced the average F1 score by up to 0.5195 (a 137.69 % improvement) compared to the benchmark methods. The average computation time per pixel of the proposed method was also reduced by up to 16.205 μs (a 70.57 % reduction) compared to the benchmark methods.  相似文献   

3.
4.
The most common solutions to the light transport problem rely on either Monte Carlo (MC) integration or density estimation methods, such as uni‐ & bi‐directional path tracing or photon mapping. Recent gradient‐domain extensions of MC approaches show great promise; here, gradients of the final image are estimated numerically (instead of the image intensities themselves) with coherent paths generated from a deterministic shift mapping. We extend gradient‐domain approaches to light transport simulation based on density estimation. As with previous gradient‐domain methods, we detail important considerations that arise when moving from a primal‐ to gradient‐domain estimator. We provide an efficient and straightforward solution to these problems. Our solution supports stochastic progressive density estimation, so it is robust to complex transport effects. We show that gradient‐domain photon density estimation converges faster than its primal‐domain counterpart, as well as being generally more robust than gradient‐domain uni‐ & bi‐directional path tracing for scenes dominated by complex transport.  相似文献   

5.
The worst-case behaviour of a general class of regularization algorithms is considered in the case where only objective function values and associated gradient vectors are evaluated. Upper bounds are derived on the number of such evaluations that are needed for the algorithm to produce an approximate first-order critical point whose accuracy is within a user-defined threshold. The analysis covers the entire range of meaningful powers in the regularization term as well as in the Hölder exponent for the gradient. The resulting complexity bounds vary according to the regularization power and the assumed Hölder exponent, recovering known results when available.  相似文献   

6.
This paper focuses on discrete and continuous adjoint approaches and direct differentiation methods that can efficiently be used in aerodynamic shape optimization problems. The advantage of the adjoint approach is the computation of the gradient of the objective function at cost which does not depend upon the number of design variables. An extra advantage of the formulation presented below, for the computation of either first or second order sensitivities, is that the resulting sensitivity expressions are free of field integrals even if the objective function is a field integral. This is demonstrated using three possible objective functions for use in internal aerodynamic problems; the first objective is for inverse design problems where a target pressure distribution along the solid walls must be reproduced; the other two quantify viscous losses in duct or cascade flows, cast as either the reduction in total pressure between the inlet and outlet or the field integral of entropy generation. From the mathematical point of view, the three functions are defined over different parts of the domain or its boundaries, and this strongly affects the adjoint formulation. In the second part of this paper, the same discrete and continuous adjoint formulations are combined with direct differentiation methods to compute the Hessian matrix of the objective function. Although the direct differentiation for the computation of the gradient is time consuming, it may support the adjoint method to calculate the exact Hessian matrix components with the minimum CPU cost. Since, however, the CPU cost is proportional to the number of design variables, a well performing optimization scheme, based on the exactly computed Hessian during the starting cycle and a quasi Newton (BFGS) scheme during the next cycles, is proposed.  相似文献   

7.
This paper presents an analysis of some regularization aspects in continuous-time model identification. The study particulary focuses on linear filter methods and shows that filtering the data before estimating their derivatives corresponds to a regularized signal derivative estimation by minimizing a compound criterion whose expression is given explicitly. A new structure based on a null phase filter corresponding to a true regularization filter is proposed and allows to discuss the filter phase effects on parameter estimation by comparing its performances with those of the Poisson filter-based methods. Based on this analysis, a formulation of continuous-time model identification as a joint system input-output signal and model parameter estimation is suggested. In this framework, two linear filter methods are interpreted and a compound criterion is proposed in which the regularization is ensured by a model fitting measure, resulting in a new regularization filter structure for signal estimation.  相似文献   

8.
运动估计问题具有不适定性,单纯采用最大后验概率算法,实际上并未解决运动矢量的不连续、矢量的失真与随机噪声等棘手问题。本文应用模糊数据融合与Gibbs分布的基本思想,将运动场风险约束条件的概率分布模式有效地纳入阶段非凸函数(GNC)算法的局部迭代过程中,从而提高了运动估计效果。首先建立Gibbs的自适应能量模型,该模型可将基于特征和基于梯度的两类矢量按照优化约束条件进行融合;其次利用各种运动经验知识构造矢量的模糊风险决策表,该决策表可对Gibbs能量方程的每一步迭代收敛结果进行监督和修正,从而实现模糊数据融合。从收敛性和鲁棒性两方面说,模糊融合后的结果在原有基础上有明显提高。  相似文献   

9.
In a number of disciplines, directional data provides a fundamental source of information. A novel framework for isotropic and anisotropic diffusion of directions is presented in this paper. The framework can be applied both to denoise directional data and to obtain multiscale representations of it. The basic idea is to apply and extend results from the theory of harmonic maps, and in particular, harmonic maps in liquid crystals. This theory deals with the regularization of vectorial data, while satisfying the intrinsic unit norm constraint of directional data. We show the corresponding variational and partial differential equations formulations for isotropic diffusion, obtained from an L2 norm, and edge preserving diffusion, obtained from an L norm in general and an L1 norm in particular. In contrast with previous approaches, the framework is valid for directions in any dimensions, supports non-smooth data, and gives both isotropic and anisotropic formulations. In addition, the framework of harmonic maps here described can be used to diffuse and analyze general image data defined on general non-flat manifolds, that is, functions between two general manifolds. We present a number of theoretical results, open questions, and examples for gradient vectors, optical flow, and color images.  相似文献   

10.
Reliable and Efficient Computation of Optical Flow   总被引:3,自引:3,他引:3  
In this paper, we present two very efficient and accurate algorithms for computing optical flow. The first is a modified gradient-based regularization method, and the other is an SSD-based regularization method. For the gradient-based method, to amend the errors in the discrete image flow equation caused by numerical differentiation as well as temporal and spatial aliasing in the brightness function, we propose to selectively combine the image flow constraint and a contour-based flow constraint into the data constraint by using a reliability measure. Each data constraint is appropriately normalized to obtain an approximate minimum distance (of the data point to the linear flow equation) constraint instead of the conventional linear flow constraint. These modifications lead to robust and accurate optical flow estimation. We propose an incomplete Cholesky preconditioned conjugate gradient algorithm to solve the resulting large and sparse linear system efficiently. Our SSD-based regularization method uses a normalized SSD measure (based on a similar reasoning as in the gradient-based scheme) as the data constraint in a regularization framework. The nonlinear conjugate gradient algorithm in conjunction with an incomplete Cholesky preconditioning is developed to solve the resulting nonlinear minimization problem. Experimental results on synthetic and real image sequences for these two algorithms are given to demonstrate their performance in comparison with competing methods reported in literature.  相似文献   

11.
The aim of this study is to speed up the scaled conjugate gradient (SCG) algorithm by shortening the training time per iteration. The SCG algorithm, which is a supervised learning algorithm for network-based methods, is generally used to solve large-scale problems. It is well known that SCG computes the second-order information from the two first-order gradients of the parameters by using all the training datasets. In this case, the computation cost of the SCG algorithm per iteration is more expensive for large-scale problems. In this study, one of the first-order gradients is estimated from the previously calculated gradients without using the training dataset. To estimate this gradient, a least square error estimator is applied. The estimation complexity of the gradient is much smaller than the computation complexity of the gradient for large-scale problems, because the gradient estimation is independent of the size of dataset. The proposed algorithm is applied to the neuro-fuzzy classifier and the neural network training. The theoretical basis for the algorithm is provided, and its performance is illustrated by its application to several examples in which it is compared with several training algorithms and well-known datasets. The empirical results indicate that the proposed algorithm is quicker per iteration time than the SCG. The algorithm decreases the training time by 20–50% compared to SCG; moreover, the convergence rate of the proposed algorithm is similar to SCG.  相似文献   

12.
The estimation of dense velocity fields from image sequences is basically an ill-posed problem, primarily because the data only partially constrain the solution. It is rendered especially difficult by the presence of motion boundaries and occlusion regions which are not taken into account by standard regularization approaches. In this paper, the authors present a multimodal approach to the problem of motion estimation in which the computation of visual motion is based on several complementary constraints. It is shown that multiple constraints can provide more accurate flow estimation in a wide range of circumstances. The theoretical framework relies on Bayesian estimation associated with global statistical models, namely, Markov random fields. The constraints introduced here aim to address the following issues: optical flow estimation while preserving motion boundaries, processing of occlusion regions, fusion between gradient and feature-based motion constraint equations. Deterministic relaxation algorithms are used to merge information and to provide a solution to the maximum a posteriori estimation of the unknown dense motion field. The algorithm is well suited to a multiresolution implementation which brings an appreciable speed-up as well as a significant improvement of estimation when large displacements are present in the scene. Experiments on synthetic and real world image sequences are reported  相似文献   

13.
The first step is the analysis of oriented texture consists of the extraction of an orientation field. The orientation field is comprised of the angle and coherence images, which describe at each point the dominant local orientation and degree of anisotropy, respectively. A new algorithm for computing the orientation field for a flow-like texture is presented. The basic idea behind the algorithm is to use an oriented filter, namely the gradient of Gaussian, and perform manipulations on the resulting gradient vector field. The most important aspect of the new algorithm is that it is provably optimal in estimating the local orientation of an oriented texture. An added strength of the algorithm is that it is simpler and has a better signal-to-noise ratio than previous approaches, because it employs fewer derivative operations. We also propose a new measure of coherence, which works better than previous measures. The estimates for orientation and coherence are related to measures in the statistical theory of directional data. We advocate the use of the angle and coherence images as intrinsic images. An analysis of oriented textures will require the computation of these intrinsic images as a first step. In this sense, the computation of the orientation field, resulting in the intrinsic images, is indispensible in the analysis of oriented textures. We provide results from several experiments to indicate the usefulness of the angle and coherence intrinsic images. These results show that the notion of scale plays an important role in the interpretation of textures. Further, measures defined on these intrinsic images are useful for the inspection of surfaces.  相似文献   

14.
Single-shell high angular resolution diffusion imaging data (HARDI) may be decomposed into a sum of eigenpolynomials of the Laplace-Beltrami operator on the unit sphere. The resulting representation combines the strengths hitherto offered by higher order tensor decomposition in a tensorial framework and spherical harmonic expansion in an analytical framework, but removes some of the conceptual weaknesses of either. In particular it admits analytically closed form expressions for Tikhonov regularization schemes and estimation of an orientation distribution function via the Funk-Radon Transform in tensorial form, which previously required recourse to spherical harmonic decomposition. As such it provides a natural point of departure for a Riemann-Finsler extension of the geometric approach towards tractography and connectivity analysis as has been stipulated in the context of diffusion tensor imaging (DTI), while at the same time retaining the natural coarse-to-fine hierarchy intrinsic to spherical harmonic decomposition.  相似文献   

15.
In this paper, we develop three methods to achieve reliable closed-loop, tool face control for directional drilling operations. This is a necessary step to achieve closed-loop, automated directional guidance. Our algorithms combine existing industry top-drive controllers with new control approaches. The torsional model we use for the drill string has been field validated and takes into account the Coulomb friction between the drill string and the borehole. These distributed friction terms are either assumed known (or measured) or can be estimated using a state-observer. In this work, we improve such a state-observer to obtain an estimation of the tool face orientation in real-time. We then propose different approaches to control the tool face. The first method is based on a feed-forward control law. It uses the flatness of the model and the estimation of the orientation to generate an admissible trajectory which is then tracked. In the second procedure, we require a stable rotation off-bottom before smoothly changing the reference to zero to stop bit rotation. This change of reference induces a change of orientation that can be estimated and finally compensated by repeating the procedure. Finally, the last method uses a series of trapezoidal setpoint inputs – bumps – to calculate the change in downhole tool face per change in surface orientation before arriving at the correct tool face after three iterations. These three algorithms are illustrated in simulations of field scenarios and their effectiveness and limitations, depending on the reliability and availability of downhole orientation data, are discussed.  相似文献   

16.
We propose a Bayesian formulation for the direct interpretation of visual motion. Direct interpretation bypasses the explicit computation of optical flow to involve directly the three dimensional unknowns of motion and depth. The Bayesian formulation rests on Markov Random Field modeling, a formalism that has been shown to be quite powerful for other problems such as optical flow estimation, surface reconstruction, and image restoration. The resulting minimization problem is solved using the Gibbs sampler, in virtue of the MRF-Gibbs distribution equivalence. The approach is global as it seeks an interpretation at every point of a lattice over the image domain.  相似文献   

17.
The purpose of conventional linear discriminant analysis (LDA) is to find an orientation which projects high dimensional feature vectors of different classes to a more manageable low dimensional space in the most discriminative way for classification. The LDA technique utilizes an eigenvalue decomposition (EVD) method to find such an orientation. This computation is usually adversely affected by the small sample size problem. In this paper we have presented a new direct LDA method (called gradient LDA) for computing the orientation especially for small sample size problem. The gradient descent based method is used for this purpose. It also avoids discarding the null space of within-class scatter matrix and between-class scatter matrix which may have discriminative information useful for classification.  相似文献   

18.
Singular point, as a global feature, plays an important role in fingerprint recognition. Inconsistent detection of singular points apparently gives an affect to fingerprint alignment, classification, and verification accuracy. This paper proposes a novel approach to pixel-level singular point detection from the orientation field obtained by multi-scale Gaussian filters. Initially, a robust pixel-level orientation field is estimated by a multi-scale averaging framework. Then, candidate singular points in pixel-level are extracted from the complex angular gradient plane derived directly from the pixel-level orientation field. The candidate singular points are finally validated via a cascade framework comprised of nested Poincare indices and local feature-based classification. Experimental results over the FVC 2000 DB2 confirm that the proposed method achieves robust and accurate orientation field estimation and consistent pixel-level singular point detection. The experimental results exhibit a low computational cost with better performance. Thus, the proposed method can be employed in real-time fingerprint recognition.  相似文献   

19.
20.
This paper presents a method taking global illumination into account in a ray tracing environment. A vector approach is introduced, which allows to deal with all the types of light paths and the directional properties of materials. Three types of vectors are defined: Direct Light Vectors associated to light sources, Indirect Light Vectors which correspond to light having been diffusely reflected at least once and Caustic Light Vectors which are associated to light rays emitted by sources and reflected and/or transmitted by specular surfaces. These vectors are estimated at a small number of points in the scene. A weighted interpolation between known values allows to reconstruct these vectors for the other points, with the help of a gradient computation for the indirect component. This approach also allows to take uniform area light sources (spherical, rectangular and circular) into account for all the types of vectors. Computed images are thus more accurate and no discretizing of the geometry of the scene is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号