首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用ProCAST铸造仿真软件对镍基中空叶片定向凝固过程进行仿真模拟。结果表明:当界面换热系数恒定为1 500 W/m2·K时,随着抽拉速率逐渐降低,糊状区最小宽度从66.4 mm(v=8 mm/min)降低为39.1 mm(v=2mm/min);当抽拉速率恒定为2 mm/min时,随着界面换热系数降低,糊状区最小宽度从74.5 mm(H=1 500 W/m2·K)降低为39.1 mm(500 W/m2·K);抽拉速率和界面换热系数分别为2 mm/min和1 500 W/m2·K时,中空叶片最大位移量约为0.05 mm,可获得一定的尺寸精度。  相似文献   

2.
采用液态金属冷却法在恒定温度梯度GL=334 K/cm,大生长速率范围内(2~300μm/s)对Ni-45.5Al-9Mo (摩尔分数,%)共晶合金进行定向凝固制备。研究生长速率(v)对纤维间距(λ)、纤维直径(d)和纤维体积分数的影响。在实验中发现平界面和胞界面两类共晶生长界面。在平界面和胞界面组织中,生长速率(v)与纤维间距(λ)和纤维直径(d)的关系经回归分析分别为:λv1/2=5.90μm·μm1/2·s1/2和 dv1/2=2.18μm·μm1/2·s1/2。Mo纤维的体积分数可在一定的范围内随生长速率进行调整,这是由生长过程中界面前沿过冷度的增加及共晶组织中各组成相的生长特性引起的。  相似文献   

3.
基于3D-CAFE法对连铸法制备的Ag-28Cu合金的凝固组织进行了模拟,研究了表面换热系数、浇注温度和拉速对凝固组织的影响。结果表明,增大表面换热系数、降低浇注温度、提高拉速,可起到细化晶粒的效果。在最佳工艺条件为表面换热系数1800 W/(m2·K)、浇注温度830℃、拉速1.5 m/min时,Ag-28Cu合金的凝固组织等轴晶比例最大,且晶粒较细。  相似文献   

4.
文中设计了模铸实验并采用喷水冷却方式来模拟AZ31镁合金半连铸一冷区传热过程,得到了用于反求界面换热系数的温度变化曲线。采用反热传导法求解了不同冷却水量下熔体-模具间的界面换热系数,并分析了冷却水量对界面换热系数的影响。结果表明,随着冷却水量的增加,界面换热系数峰值与冷却水量呈正相关,冷却水量由20 L/min提高到60 L/min时,换热系数峰值从1 425.8 W/(m2·K)增加到2 727.5 W/(m2·K),且高冷却水量的换热系数峰值出现在低的温度;随着冷却水量的增加,从铸坯边部到中心的凝固组织均匀性明显提高。  相似文献   

5.
建立了镍基K418高温合金下引式热型连铸(OCC)凝固过程温度场模型,采用试验与ProCAST模拟相结合的方法修正了界面换热系数条件,使模拟结果与试验结果的最大差异不超过4%,可以较好地模拟实际凝固过程温度场。模拟结果表明:当浇注温度从1 460℃升高到1 540℃时,两相区宽度由15 mm减小到10 mm,温度梯度从33 K/cm增大到40 K/cm;当冷却距离由13 mm增大到33 mm时,两相区宽度从12 mm增大到16 mm,温度梯度从28 K/cm降低到23 K/cm;当平均拉坯速度从9 mm/min增大到18 mm/min时,两相区宽度从12 mm增大到15 mm;当温度梯度从35 K/cm减小到25 K/cm、拉速增大到36 mm/min时,固液界面位置下移到BN铸型出口处,有拉断、漏钢的风险。K418高温合金铸锭(10 mm)合理的下引式热型连铸制备参数范围为:熔体浇注和BN铸型温度1 500~1 540℃,冷却距离23 mm,平均拉坯速度9~18 mm/min。  相似文献   

6.
用实验与模拟计算相结合的方法研究了水冷条件下430铁素体不锈钢的温度场分布、流场分布及凝固组织。水冷条件下,铸件的凝固组织几乎都是等轴晶,当顶部的传热系数h=100 W/(m2·K),四周和底部的传热系数h=2000 W/(m2·K)时,模拟计算的凝固组织与实验得到的组织基本一致。采用CAFE模块对水冷条件下铁素体不锈钢凝固过程的温度场和流场进行分析,得到铸件底部凝固前沿和液相线前沿温度梯度最大分别为6.75 K/mm和7.15 K/mm,从侧壁到中心,液相线前沿和凝固前沿的温度梯度逐渐降低;铸件底部到顶部固液两相区的宽度逐渐增加然后减小,固液两相区内流体流动速率逐渐降低,在底部达到最大值4.23 mm/s;液相线前沿流体流动速率呈逐渐增大的趋势,平均值为2.40 mm/s。  相似文献   

7.
实验研究了强风气垫冲击射流加热铝合金薄板的对流换热特性。基于集总热容法计算表面对流换热系数,获得射流速度42 m/s~68 m/s(压力0.4 kPa~1.0 kPa)的表面对流换热系数与铝板温度关系。对于厚度为3 mm的薄板,若要实现工业气垫炉加热所需的4.5℃/s的加热速率,其表面平均对流换热系数应大于231 W/(m~2·K),雷诺数Re要大于17 138。利用实验数据的回归处理及最小二乘法,建立了强风气垫射流加热过程的平均对流换热准数方程,与实验数据比较,该准数方程与实验结果吻合良好,误差小于4.5%。  相似文献   

8.
在定向凝固试验中,采用全熔和区熔两种加热方式分别获得了180 K/cm和250~360 k/cm的温度梯度,在5~500μm/s的抽拉速率范围内对过包晶Nd13.5Fe79.75 B6.75合金进行了定向凝固试验,考察了温度梯度和抽拉速率对此合金凝固组织及相含量的影响.结果表明,合金的凝固组织包含初生a-Fe枝晶、包晶Nd2Fe14B相及少量的富Nd相.随着抽拉速率的增加,包晶相含量先增加后减少;而在同一抽拉速率下,提高温度梯度可增加铁磁性Nd2Fe14B相的含量.当抽拉速率为50 μm/s时,区熔试样中(G=300 K/cm)Nd2Fe14B相的含量可达约90%,而相同速率下全熔试样(G=180 K/cm)中其含量约为60%.  相似文献   

9.
为了确定中厚板辊式淬火过程中的最佳换热系数,进行了12MnNiVR钢板淬火过程中的温度场和应力场计算.依据温度场分析提出了中厚板在淬火机高压区内淬火过程中换热系数的确定方法,并用该方法确定了不同厚度12MnNiVR钢板在高压区淬火的换热系数.应力场分析表明,在低压区采用低的换热系数,可显著降低钢板淬火过程中产生的热应力及残余应力.20mm厚12MnNiVR钢板低压区淬火,平均换热系数确定为1 kW/(m2·K),与采用8 kW/(m2·K)相比,钢板表面残余压应力与中心残余拉应力的差值可降低181.2 MPa.  相似文献   

10.
在改进Hamasaiid模型的基础上提出了新的金属型铸造界面换热系数峰值hmax预测模型,该模型引入表面张力参数,定量研究其对界面换热的影响。采用A356铝合金金属型重力铸造实验对模型进行验证。结果表明:反求计算的hmax约为5944 W/(m2·K),采用Hamasaiid模型计算的hmax约为7987 W/(m2·K),误差约为34%;新模型未考虑表面张力时计算的hmax约为6228 W/(m2·K),误差约为5%,考虑表面张力时计算的hmax约为5992W/(m2·K),误差约为1%。新模型计算精度有较大提升,计算结果与反求结果具有很好的一致性,表面张力对计算精度有一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号