首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Batch and electrokinetic experiments were conducted to investigate the removal of three different heavy metals, chromium(VI), nickel(II), and cadmium(II), from a clayey soil by using ethylenediamine tetraacetic acid (EDTA) as a complexing agent. The batch experiments revealed that high removal of these heavy metals (62–100%) was possible by using either a 0.1?M or 0.2?M EDTA concentration over a wide range of pH conditions (2–10). However, the results of the electrokinetic experiments using EDTA at the cathode showed low heavy metal removal efficiency. Using EDTA at the cathode along with the pH control at the anode with NaOH increased the pH throughout the soil and achieved high (95%) Cr(VI) removal, but the removal of Ni(II) and Cd(II) was limited due to the precipitation of these metals near the cathode. Apparently, the low mobility of EDTA and its migration direction, which opposed electroosmotic flow, prevented EDTA complexation from occurring. Overall, this study found that many complicating factors affect EDTA-enhanced electrokinetic remediation, and further research is necessary to optimize this process to achieve high contaminant removal efficiency.  相似文献   

2.
An innovative system was developed to enhance electrokinetic extraction of heavy metals from contaminated soils. The system consists of a layer that was continuously flushed with nitric acid at pH 3 near the cathodic region and two reservoirs with 0.4 M NaOAc at pH 3.8 and acetic acid at pH 4 flushing the anode and cathode, respectively. Both pure kaolinite and carbonate-rich illitic soils were tested. With traditional electrokinetic systems, approximately 60% of lead was transported to the cathode for kaolinite, whereas there was little removal for carbonate-rich illitic soil. This result indicates that clay minerals have an important effect on the desorption process. The integrated electrokinetic system maximized contaminant extraction and minimized precipitation in the cathodic region. Over 80% of the lead was removed from carbonate-rich illitic soil, with 5,000-mg∕kg initial lead contaminated concentration, and leached out through the flushing layer. The system operated successfully in laboratory bench tests with carbonate-rich illitic soil.  相似文献   

3.
This paper presents the results of an experimental investigation undertaken to evaluate different purging solutions to enhance the removal of multiple heavy metals, particularly chromium, nickel, and cadmium, from a low buffering clay, specifically kaolin, during electrokinetic remediation. Experiments were conducted on kaolin spiked with Cr(VI), Ni(II), and Cd(II) in concentrations of 1,000, 500, and 250 mg/kg, respectively, which simulate typical electroplating waste contamination. A total of five different tests were performed to investigate the effect of different electrode purging solutions on the electrokinetic remedial efficiency. A constant DC voltage gradient of 1 V/cm was applied for all the tests. The removal of heavy metals from the soil using tap water as the purging solution was very low. When 1 M acetic acid was used as the purging solution in the cathode, the removal of chromium, nickel, and cadmium was increased to 20, 19, and 13%, respectively. Using 0.1 M ethylene diamine tetraacetic acid as the purging solution in the cathode, 83% of the initial Cr was removed; however, the nickel and cadmium removal was very low. A sequentially enhanced electrokinetic remediation approach involving the use of water as a purging solution at both the anode and cathode initially, followed by the use of acetic acid as the cathode purging solution and a NaOH alkaline solution as the anode purging solution was tested. This sequential approach resulted in a maximum removal of chromium, nickel, and cadmium of 68–71, 71–73, and 87–94%, respectively. This study shows that the sequential use of appropriate electrode purging solutions, rather than a single electrode purging solution, is necessary to remediate multiple heavy metals in soils using electrokinetics.  相似文献   

4.
Previous electrokinetic remediation studies involving the geochemical characterization of heavy metals in high acid buffering soils, such as glacial till soil, revealed significant hexavalent chromium migration towards the anode. The migration of cationic contaminants, such as nickel and cadmium, towards the cathode was insignificant due to their precipitation under the high pH conditions that result when the soil has a high acid buffering capacity. Therefore the present laboratory study was undertaken to investigate the performance of different electrolyte (or purging) solutions, which were introduced to either dissolve the metal precipitates and/or form soluble metal complexes. Tests were conducted on a glacial till soil that was spiked with Cr(VI), Ni(II), and Cd(II) in concentrations of 1,000, 500, and 250 mg/kg, respectively, under the application of a 1.0 VDC/cm voltage gradient. The electrolyte solutions tested were 0.1M EDTA (ethylenediaminetetraacetic acid), 1.0M acetic acid, 1.0M citric acid, 0.1M NaCl/0.1M EDTA, and 0.05M sulfuric acid/0.5M sulfuric acid. The results showed that 46–82% of the Cr(VI) was removed from the soil, depending on the purging solution used. The highest removal of Ni(II) and Cd(II) was 48 and 26%, respectively, and this removal was achieved using 1.0M acetic acid. Although cationic contaminant removal was low, the use of 0.1M NaCl as an anode purging solution and 0.1M EDTA as a cathode purging solution resulted in significant contaminant migration towards the soil regions adjacent to the electrodes. Compared to low buffering capacity soils, such as kaolin, the removal of heavy metals from the glacial till soil was low, and this was attributed to the more complex composition of glacial till. Overall, this study showed that the selection of the purging solutions for the enhanced removal of heavy metals from soils should be primarily based upon the contaminant characteristics and the soil composition.  相似文献   

5.
Researchers have performed experimental studies using ammonium citrate (AC) during the electrokinetic (EK) remediation process for the extraction of cadmium (Cd) and copper (Cu) from the contaminated soil. They evaluated the efficiency of ammonium citrate by considering it as a washing solution and a purging solution at the anode electrode compartment. The efficiency of electrokinetic extraction was observed to be significantly influenced by the pH and buffering nature of the soil medium. The experimental studies indicate that the removal of cadmium and copper was 48.9% and 30.0%, respectively, when ammonium citrate was used both washing and purging solution. The solubility of both cadmium (Cd++) and copper (Cu++) in EK-treated soils has also been estimated by sequential extraction studies with deionized (DI) water. The analytical techniques, X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscope (SEM) provide the evidence of migration of cations during treatment of contaminated soil by process of electroosmosis (EO). The SEM images of both cadmium- and copper-contaminated soils show that these soils have a fluffier and more porous structure. This might be caused by the change in surface charges of the clay particles as a result of introduction of heavy metals. The mineralogical compositions of soil are not altered significantly by electrokinetic process.  相似文献   

6.
The coexistence of heavy metals and polycyclic aromatic hydrocarbons (PAHs) at many of the contaminated sites poses a severe threat to public health and the environment. Very few technologies, such as soil washing/flushing and stabilization/solidification, are available to remediate such sites; however, these technologies are ineffective and expensive to treat contaminants in low permeability clayey soils. Previous studies have shown that electrokinetic remediation has potential to remove heavy metals and organic compounds when they exist individually in clayey soils. In the present study, the feasibility of using surfactants and organic acids sequentially and vice versa during electrokinetic remediation was evaluated for the removal of both heavy metals and PAHs from clayey soils. Kaolin was selected as a model clayey soil and it was spiked with phenanthrene and nickel at concentrations of 500 mg/kg dry each to simulate typical field mixed contamination. Bench-scale electrokinetic experiments were performed with the sequential anode conditioning with: (1) 1 M citric acid followed by 5% Igepal CA-720; (2) 1 M citric acid followed by 5% Tween 80; and (3) 5% Igepal CA-720 followed by 1 M citric acid. A periodic voltage gradient of 2 V/cm (with 5 days on and 2 days off cycles) was applied in all the tests. A removal of about 96% of phenanthrene was observed in the test with 5% Igepal CA-720 followed by 1 M citric acid sequence. Most of the nickel (>90%) migrated from anode to cathode in this test; however, it precipitated in the section very close to the cathode due to the high pH conditions. Conversely, the removal efficiency of nickel was about 96 and 88% in the tests with 1 M citric acid followed by 5% Igepal CA-720 sequence and 1?M citric acid followed by 5% Tween 80 sequence, respectively. However, the migration and removal efficiency of phenanthrene in both of these tests were very low. Overall, it can be concluded that the sequential use of 5% Igepal CA-720 followed by 1 M citric acid may be an effective remedial strategy to remove coexisting heavy metals and PAHs from clayey soils.  相似文献   

7.
紫金山低品位次生硫化铜矿采用绿色、高效、低碳的生物提铜工艺,年产阴极铜规模2万吨。矿石中高硫铜比使得生物浸出过程可以自发进行,除水外无需补酸和添加任何药剂。每吨矿石的净产酸量约为3 kg,造成生物浸出过程酸铁过剩,需要开路,且喷淋周期从经济性上受到制约,一般不超过200天。喷淋周期结束后,浸出旧堆不出渣,原位封堆绿化,但酸性环境下生态修复难度大且成本高。研究了过剩酸铁溶液对完成浸铜周期老堆的浸出行为,并初步研究了该类尾废的资源利用方向。  相似文献   

8.
石如祥  张丽  陈树莲 《冶金分析》2017,37(10):79-83
实验对已报道的EDTA络合滴定法测定锡铅焊料中高含量镉的方法进行了改进,通过将称样量增至1.50g和用六次甲基四胺缓冲溶液(pH=6.00±0.02)来替代乙酸-乙酸钠缓冲溶液的方法改善了EDTA络合滴定法测定锡铅焊料中镉的精密度,同时采用铅标准溶液代替镉标准溶液标定EDTA标准滴定溶液,避免了标定时指示剂出现僵化的现象。锡铅焊料样品以酒石酸、硝酸、盐酸溶解,采用酒石酸络合掩蔽锡、锑、铋等杂质元素,在pH 6.00的六次甲基四胺缓冲体系中,以二甲酚橙为指示剂,先用EDTA标准滴定溶液滴定了铅、镉总量,再以酒石酸钾钠和邻菲罗啉掩蔽镉,用EDTA标准滴定溶液滴定了铅含量,最后通过差减法计算得到了镉的含量。干扰试验表明,锡铅焊料样品中的杂质元素不干扰测定。方法用于锡铅焊料样品中镉质量分数在10.00%~20.00%的测定,结果与电感耦合等离子体原子发射光谱法(ICP-AES)一致,相对标准偏差(RSD,n=11)为0.28%~0.87%。  相似文献   

9.
Electrokinetic remediation technology is one of the developing technologies that offers great promise for the cleanup of soils contaminated with heavy metals. However, the performance of an electrokinetic remediation system depends on the interaction of a complex set of interrelated system variables and parameters. Many of these interactions were addressed in this study by incorporating geochemical reactions into electrokinetic remediation modeling. A one-dimensional transport model was developed to predict the transport and speciation of heavy metals (chromium, nickel, and cadmium) in soil during electrokinetic remediation as a function of time and space. The model incorporates: (1) pH-dependent adsorption of contaminants to the soil surface; (2) sensitivity of soil surface potential and electroosmotic flow to the pore water properties; and (3) synergistic effects of multiple chemical species on electrokinetic remediation. The model considers that: (1) Electrical potential in the soil is constant with time; (2) surface complexation reactions are applicable in the highly concentrated clay suspensions; (3) the effect of temperature is negligible; and (4) dissolution of soil constituents is negligible. The predicted pH profiles, electroosmotic flow, and transport of chromium, nickel, and cadmium in kaolin soil during electrokinetic remediation were found to reasonably agree with the bench-scale electrokinetic experimental results. The predicted contaminant speciation and distribution (aqueous, adsorbed, and precipitated) allow for an understanding of the transport processes and chemical reactions that control electrokinetic remediation.  相似文献   

10.
镉常伴生于锌矿、铅锌矿和铜铅锌矿石中,约95%的镉作为铅锌冶炼过程中的副产品被回收,其中冶炼烟灰是镉回收的主要原料之一。本文以铅冶炼烟尘为对象,研究了其硫酸浸出液中镉的电解沉积行为,主要考察了电流密度、温度以及镉离子的浓度对电流效率、单位电耗、阴极镉纯度及形貌的影响规律。结果表明:在电流密度150 A/m2、温度30 ℃、浸出液中镉浓度40 g/L的条件下,电沉积4 h的电流效率可达96.14%,单位电耗为1.769 kW·h/kg,阴极镉的纯度可达到97.75%。升高温度、增大电流密度、镉离子的消耗都在不同程度上降低了电流效率并增加了单位电耗。电极反应动力学表明,镉离子在阴极区的还原过程受离子扩散控制。   相似文献   

11.
Cadmium can be effectively removed from wet-process phosphoric acid (WPA) by solvent extraction using long-chain amines, preferably tertiary amines, as extractants. Stripping can be performed either with water or with acids such as phosphoric or sulphuric acid depending on the final conversion of the cadmium waste. Scrubbing could be necessary in some cases and can be performed with alkali.A factorial design experiment was performed to determine the effects of four different components (H2SO4, HCl, HF, H2SiF6) in WPA on cadmium extraction with Alamine 336. The largest influence on cadmium extraction is seen for the hydrochloric acid, drastically increasing the distribution coefficient. Variations of the concentrations of H3PO4, HCl, HF, Fe and Al were also studied. The extraction of cadmium was seen to be strongly dependent on phosphoric acid concentration.A simple extraction model is proposed indicating that CdCl42? ions are extracted.  相似文献   

12.
熔盐电脱氧工艺是直接电解还原金属氧化物制备金属或合金的方法,以其工艺简单、环境友好、易于调控等优点广泛应用于金属及合金的制备,但该工艺目前存在电解效率低等问题。影响该方法电解效率的主要因素有:氧化物阴极导电性、O2-扩散、阴极电势、阳极材料。阴极导电性主要受氧空穴的形成,阴极晶型结构的影响,增加阴极氧空穴及有效控制晶型转变有利于增加阴极导电性,从而提高电解效率;O2-扩散影响电解反应速率,增加阴极表面积及合理选择熔盐组分可促进O2-扩散,促进电解脱氧;阴极电势和阳极材料影响阴极有效脱氧,合理控制阴极电势、选择过电位小,性质稳定的阳极材料均有利于提高电解效率。并展望了今后的研究中重点关注通过改进阴极,改进电解装置等提高电脱氧效率。  相似文献   

13.
采用电动力技术对电解锰渣中可溶性锰的迁移、转化和富集规律进行研究。结果表明,直接电动力和CO_2辅助电动力均可在阴极区富集锰,反应48h锰富集量分为达到3.8%和4.3%。两种方式作用下,阴极区锰的富集量随反应时间的增加而增加,阳极区锰含量随反应时间的增加逐渐减少。从阴极到阳极,锰含量逐渐减少。直接电动力作用下的反应机制为,锰在阴极区富集并与OH-反应形成Mn(OH)_2、CaMn(OH)SiO_4等难溶物。CO_2辅助电动力作用下的反应机制为,CO_2与阴极区的OH-反应形成CO_3~(2-),CO_3~(2-)进一步与迁移到阴极区的Mn~(2+)反应形成MnCO_3。  相似文献   

14.
Ethylenediaminetetraacetic acid (EDTA) in alkaline solution has been found to be effective in the extraction of radium-226 from uranium-mill final Pachuca solid discharge at Elliot Lake, Ontario. Under optimal conditions, 80–85% of the radium in the solids was extracted. These conditions (temperature, EDTA concentration, liquid to solid ratio, contact time) were considerably milder than those used in other studies. Even under vigorous conditions, however, only a part of the residual radium can be removed. The extraction of radium by EDTA can be described by an adsorption mechanism. Sulfate ion does not inhibit the extraction.  相似文献   

15.
An integrated electrochemical oxidation process that utilizes electrokinetics (EK) to deliver the oxidant (5–10% hydrogen peroxide, H2O2) and chelant [40 mM of ethylenediaminetetraacetic acid (EDTA) or diethylenetriaminepentaacetic acid (DTPA)] or iron chelate (1.4 mM Fe-EDTA or Fe-DTPA) to oxidize polycyclic aromatic hydrocarbons (PAHs) in soils was investigated. Batch and bench-scale EK experiments were conducted using: (a) kaolin, a low permeability clayey soil, spiked with phenanthrene at 500 mg/kg, and (b) former manufactured gas plant (MGP) soil, a high buffering silty soil, contaminated by a variety of PAHs (1493 mg/kg). Batch experiments showed that chelant solutions dissolve native iron minerals to form soluble Fe-chelates that remain available even at higher pH conditions of soil for the Fenton-like oxidation of the PAHs. In EK experiments, a 5–10% H2O2 solution was delivered from the anode and a chelant solution or iron-chelate was delivered from the cathode. Preflushing of soil with 5% ethanol and ferrous sulfate (1.4 mM) prior to oxidant delivery was also investigated. An electric potential of 2 VDC/cm was applied in all tests to induce electroosmotic flow for 5–8 days for kaolin and 25 days for the MGP field soil. In the absence of any chelating agent, phenanthrene oxidation was catalyzed by native iron present in kaolin soil, and 49.8–82.3% of phenanthrene was oxidized by increasing H2O2 concentration from 5–10%. At 5% H2O2 concentration, phenanthrene oxidation was not increased by using 40 mM EDTA, 40 mM DTPA or 1.4 mM Fe-DTPA, but it increased to 70% using 1.4 mM Fe-EDTA. Maximum phenanthrene oxidation (90.5%) was observed by 5% ethanol preflushing and then treating with 5% H2O2 at the anode and 1.4 mM Fe-EDTA at the cathode. However, preflushing with 1.4 mM ferrous sulfate did not improve phenanthrene oxidation. The results with the MGP field soil indicated that delivery of 5% H2O2 alone resulted in oxidation of 39.8% of total PAHs (especially 2- and 3-ring PAHs). The use of EDTA and Fe-EDTA did not increase PAHs oxidation in this soil. Overall, the results reveal that an optimized in situ combined technology of EK and Fenton-like process has the potential to oxidize PAHs in low permeability and/or high buffering soils.  相似文献   

16.
Electrokinetic remediation was studied for the removal of toxic heavy metals from tailing soils. The study emphasized the dependency of removal efficiencies upon their speciations, as demonstrated by the different extraction methods used, which included sequential extraction, total digestion, and 0.1 N HCl extraction. The tailing soils examined showed different physicochemical characteristics, such as initial pH, particle size distribution, and major mineral constituents, and they contained high concentrations of target metal contaminants in various forms. The electrokinetic removal efficiencies of heavy metals were significantly influenced by their partitioning prior to treatment, and the pHs of the tailing soils. The mobile and weakly bound fractions of heavy metals, such as the exchangeable fraction, were easily removed by electrokinetic treatment (more than 90% removal efficiency), but immobile and strongly bound fractions, such as the organically bound species and residual fractions, were not significantly removed (less than 20% removal efficiencies).  相似文献   

17.
The Superfund Amendments and Reauthorization Act requires the use of remedial technologies that permanently and significantly reduce the volume, toxicity, or mobility of contaminated materials at affected sites. Extractive processes can accomplish the requirements of the Superfund Amendments and Reauthorization Act. Ethylenediaminetetraacetic acid (EDTA), N-2(acetamido)iminodiacetic acid (ADA), pyridine-2,6-dicarboxylic acid (PDA), and hydrochloric acid (HCl) were evaluated over a range of concentrations and reaction times in batch studies for their ability to remove lead (Pb) and cadmium (Cd) from a Superfund soil (Pbtotal= 65,200 mg∕kg, Cdtotal= 52 mg∕kg). Lead extraction was limited by a slow overall reaction. The order of Pb removal by extractant was EDTA > ADA > PDA > HCL. The soil was subjected to three repeated 1 h extractions in which a maximum of 86, 84, 70, and 54% of the total soil Pb was removed with EDTA, ADA, PDA, and HCl, respectively. The soil was not treated to below the Pb regulatory limit (1,000 mg∕kg), even after five extractions with 0.075 M EDTA; however, the remaining Pb occurred in a residual form. All extractants treated the soil below the proposed Cd regulatory limit (40 mg∕kg) within 1 h. With three repeated extractions EDTA, ADA, PDA, and HCl removed a maximum of 96, 100, 98, and 100% Cd, respectively. Lead recovery from spent solution was accomplished by hydroxide precipitation in the presence of excess calcium. Recovery at pH 11 was 70, 98, and 97% from the EDTA, ADA, and PDA complexes, respectively. The results indicate that the remediation of weathered, heavily Pb- and Cd-contaminated soils via extractive processes is possible under the appropriate conditions.  相似文献   

18.
The removal of 2,4-dinitrotoluene (2,4-DNT), a munitions waste constituent and an industrial intermediate, from contaminated soils was evaluated using enhanced electrokinetic (EK) remediation. Two model soils were spiked with 480?mg of 2,4-DNT/kg of dry soil for the EK experiments. The spiked soils were kaolin, a low-buffering clayey soil, and glacial till, a high-buffering silty soil. The glacial till was obtained from a field site and contained 2.8% organic matter. Deionized (DI) water and cyclodextrin solutions were used as the EK purging solutions. Cyclodextrin was selected as a nonhazardous solubility enhancer for enhancing the desorption and removal of 2,4-DNT from soils in EK remediation. Two aqueous solutions of hydroxypropyl β-cyclodextrin (HPCD) at concentrations of 1 and 2% were selected for kaolin and glacial till, respectively, based on results for batch extraction of 2,4-DNT from the same soils. During the EK experiments, greater current and electro-osmotic flow were observed for HPCD solutions than for DI water. After the completion of the EK experiments, the soils in the EK cell were extruded and the residual 2,4-DNT in the soils was determined. Less 2,4-DNT remained in the kaolin soil (up to 94% transformed) than in the glacial till soil (20% transformed) due to strong retention of 2,4-DNT by the soil organic matter in glacial till. For kaolin, less 2,4-DNT remained in the soil using HPCD solutions than using DI water. For glacial till, comparable levels of 2,4-DNT remained in the soil for both EK solutions. Since no 2,4-DNT was detected in the effluents from the EK cells, the decrease in 2,4-DNT concentration in the kaolin and glacial till soils was attributed to electrochemical transformation of 2,4-DNT to other species.  相似文献   

19.
The extraction of cadmium from phosphoric media has been studied. The D2EHDTPA was used as extractant and dodecane as diluent. No third phase was observed in the investigated conditions.A continuous micro-pilot scale mixer-settler was successfully tested for both extraction and stripping. More than 99% extraction rate was obtained in steady-state conditions with a flow rate ratio Aqueous/Organic equal to 1.1. Continuous stripping was performed using HCl 4 M. More than 96% of the cadmium was stripped in one continuous mixer-settler stage for flow rate ratio equal to 0.7. Results were in good agreement with the predicted values based on the McCabe–Thiele method. Experimental mixer-settler stages behave as ideal ones (Murphree efficiency > 98%).An optimal flow sheet is proposed to purify the Wet Phosphoric Acid (WPA) and to recover a relatively concentrated cadmium solution (1 g L? 1). Two ideal stages operating at phase ratio A/S equal to 5/1 are required for the extraction step leading to a very depleted raffinate (< 0.2 µg L? 1). For the stripping step, six stages are required (S/A = 5/1). The recovered organic phase contains less than 2 µg L? 1 and could be recycled in the extraction step.  相似文献   

20.
从锌精矿焙烧电尘中提取镉   总被引:1,自引:0,他引:1  
对从锌精矿焙烧电尘中回收镉的工艺进行了研究,比较了水浸、酸浸及氧化酸浸3种浸镉方法,指出氧化酸浸-除砷-置换-压团-熔铸是回收镉的最佳流程,用这种方法处理含镉电尘,镉的浸出率大于90%,粗镉品位99.10%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号