首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The role of volatile chemicals used for mate finding was studied for males of Lariophagus distinguendus (Först.), a parasitoid of the granary weevil Sitophilus granarius (L.). In bioassays that used a static four-chamber olfactometer, males were attracted by host feces, hexane extracts from host feces, and volatile extracts of the feces obtained by closed-loop stripping (CLS). On the other hand, volatiles emitted by unmated females did not elicit any preferences in males. Both sexes of L. distinguendus responded to a synthetic mixture of neral, geranial, neryl formate, and tridecane occurring in the investigated extracts. All compounds are common constituents of astigmatid mites that are often associated with possible hosts of L. distinguendus. In the system investigated, all main compounds found in CLS extracts from larval feces of S. granarius are due to the mold mite Tyrophagus putrescentiae (Schrank) that uses neral, geranial, and neryl formate as an alarm pheromone. The possible role of host-associated astigmatid mites in mate and host finding of L. distinguendus is discussed.  相似文献   

2.
Herbivore-induced plant volatiles can function as indirect defense signals that attract natural enemies of herbivores. Several parasitoids are known to exploit these plant-provided cues to locate their hosts. One such parasitoid is the generalist Cotesia marginiventris, which is, among others, attracted to maize volatiles induced by caterpillar damage. Maize plants can be induced to produce the same blend of attractive volatiles by treating them with regurgitant of Spodoptera species. We collected and analyzed the regurgitant-induced emissions of two plant species (cowpea and maize) and of eight Mexican maize varieties and found significant differences among their volatile emissions, both in terms of total quantity and the quality of the blends. In a Y-tube olfactometer, the odors of the same artificially induced plant species and Mexican varieties were offered in dual choice experiments to naïve mated females of C. marginiventris. Wasps preferred cowpea over maize odor and, in 3 of 12 combinations with the maize varieties, they showed a preference for the odors of one of the varieties. A comparison of the odor collection with results from the behavioral assays indicates that not only the quantity of the volatile emissions, but also the quality composition of the volatile blends is important for attraction of C. marginiventris. The results are discussed in the context of the possibility of breeding crop varieties that are particularly attractive to parasitoids.  相似文献   

3.
The odor produced by a plant under herbivore attack is often used by parasitic wasps to locate hosts. Any type of surface damage commonly causes plant leaves to release so-called green leaf volatiles, whereas blends of inducible compounds are more specific for herbivore attack and can vary considerably among plant genotypes. We compared the responses of naïve and experienced parasitoids of the species Cotesia marginiventris and Microplitis rufiventris to volatiles from maize leaves with fresh damage (mainly green leaf volatiles) vs. old damage (mainly terpenoids) in a six-arm olfactometer. These braconid wasps are both solitary endoparasitoids of lepidopteran larvae, but differ in geographical origin and host range. In choice experiments with odor blends from maize plants with fresh damage vs. blends from plants with old damage, inexperienced C. marginiventris showed a preference for the volatiles from freshly damaged leaves. No such preference was observed for inexperienced M. rufiventris. After an oviposition experience in hosts feeding on maize plants, C. marginiventris females were more attracted by a mixture of volatiles from fresh and old damage. Apparently, C. marginiventris has an innate preference for the odor of freshly damaged leaves, and this preference shifts in favor of a blend containing a mixture of green leaf volatiles plus terpenoids, after experiencing the latter blend in association with hosts. M. rufiventris responded poorly after experience and preferred fresh damage odors. Possibly, after associative learning, this species uses cues that are more directly related with the host presence, such as volatiles from host feces, which were not present in the odor sources offered in the olfactometer. The results demonstrate the complexity of the use of plant volatiles by parasitoids and show that different parasitoid species have evolved different strategies to exploit these signals.  相似文献   

4.
The present paper examines the mechanisms of host stage selection in Lariophagus distinguendus, a larval parasitoid of the granary weevil Sitophilus granarius endophytic in wheat grain. The amount of host feces accumulating in infested grains was on average, 0.2, 0.3, 1.5, and 4 mg for first, second, third, and fourth instars, respectively. A maximum of 9 mg feces was found in grains with fourth instars. In bioassays with female parasitoids, only a little drumming and drilling behavior was observed on grain models treated with feces extract equivalent to 0.2 mg and 0.4 mg feces. Most drumming and drilling occurred on models with extracts equivalent to 4 and 8 mg feces. These results correspond to literature data demonstrating that older host larvae (fourth instars) are preferred for oviposition. Thus, host stage selection in L. distinguendus is apparently achieved by assessing the quantity of feces present in infested grains.  相似文献   

5.
In order to develop methods for mass rearing of the parasitic wasp Lariophagus distinguendus, we characterized and identified chemicals used by this parasitoid to recognize wheat grains infested by its host, larvae of the granary weevil, Sitophilus granarius, a major pest of stored grain worldwide. Bioassays revealed that drumming and drilling behavior of the parasitoids on grain models of filter paper treated with host feces was as intense as on host-infested grains. Thus, chemicals from feces are highly important to recognize infested grains. Extracts of the feces with hexane or dichloromethane applied on grain models were able to provoke drumming and drilling activity. Hexane extract of feces was as active as infested grain itself. Subsequent fractionation of the hexane extract by adsorption chromatography revealed that highest activity was recovered in the dichloromethane fraction. This fraction was characterized by the presence of -tocopherol, -tocopherol, -tocotrienol, cholesterol, ergostenol, and -sitosterol. Synthetic chemicals in proportions found in the active dichloromethane fraction stimulated drumming behavior in bioassays. The significance of these results with respect to the mass propagation of L. distinguendus as natural enemies for the control of the granary weevil is discussed.  相似文献   

6.
Herbivore-induced plant volatiles are important host finding cues for larval parasitoids, and similarly, insect oviposition might elicit the release of plant volatiles functioning as host finding cues for egg parasitoids. We hypothesized that egg parasitoids also might utilize HIPVs of emerging larvae to locate plants with host eggs. We, therefore, assessed the olfactory response of two egg parasitoids, a generalist, Trichogramma pretiosum (Tricogrammatidae), and a specialist, Telenomus remus (Scelionidae) to HIPVs. We used a Y-tube olfactometer to tests the wasps’ responses to volatiles released by young maize plants that were treated with regurgitant from caterpillars of the moth Spodoptera frugiperda (Noctuidae) or were directly attacked by the caterpillars. The results show that the generalist egg parasitoid Tr. pretiosum is innately attracted by volatiles from freshly-damaged plants 0–1 and 2–3 h after regurgitant treatment. During this interval, the volatile blend consisted of green leaf volatiles (GLVs) and a blend of aromatic compounds, mono- and homoterpenes, respectively. Behavioral assays with synthetic GLVs confirmed their attractiveness to Tr. pretiosum. The generalist learned the more complex volatile blends released 6–7 h after induction, which consisted mainly of sesquiterpenes. The specialist T. remus on the other hand was attracted only to volatiles emitted from fresh and old damage after associating these volatiles with oviposition. Taken together, these results strengthen the emerging pattern that egg and larval parasitoids behave in a similar way in that generalists can respond innately to HIPVs, while specialists seems to rely more on associative learning.  相似文献   

7.
Apoanagyrus (Epidinocarsis) lopezi De Santis is an endoparasitoid used in the biological control of the cassava mealybug Phenacoccus manihoti Matile-Ferrero in Africa. The response of naive and mated females of A. lopezi to odors from cassava plant (var. Zanaga), parasitized or unparasitized mealybugs, and plant–mealybug host complexes with or without feeding hosts was investigated in a Y-tube olfactometer. Dual-choice tests revealed that mealybug-infested plants and mealybug-damaged plants were the major sources of volatiles that attract female parasitoids to the microhabitat of its hosts. The emission of volatile chemicals appears not to be limited to the infested plant part but to occur systemically throughout the plant. On their own, unparasitized mealybugs were more attractive than uninfested plants or parasitized mealybugs alone. Parasitization of P. manihoti by A. lopezi decreased the response of parasitoids to mealybugs or mealybug–plant complexes. Plants infested with unparasitized hosts attracted more female parasitoids than plants infested with parasitized mealybugs. These results indicate that, in the long-range host-searching process, females of A. lopezi respond mainly to mealybug-induced synomones, and specific host-derived cues play a minor role.  相似文献   

8.
Herbivore feeding induces plants to emit volatiles that are detectable and reliable cues for foraging parasitoids, which allows them to perform oriented host searching. We investigated whether these plant volatiles play a role in avoiding parasitoid competition by discriminating parasitized from unparasitized hosts in flight. In a wind tunnel set-up, we used mechanically damaged plants treated with regurgitant containing elicitors to simulate and standardize herbivore feeding. The solitary parasitoid Cotesia rubecula discriminated among volatile blends from Brussels sprouts plants treated with regurgitant of unparasitized Pieris rapae or P. brassicae caterpillars over blends emitted by plants treated with regurgitant of parasitized caterpillars. The gregarious Cotesia glomerata discriminated between volatiles induced by regurgitant from parasitized and unparasitized caterpillars of its major host species, P. brassicae. Gas chromatography-mass spectrometry analysis of headspace odors revealed that cabbage plants treated with regurgitant of parasitized P. brassicae caterpillars emitted lower amounts of volatiles than plants treated with unparasitized caterpillars. We demonstrate (1) that parasitoids can detect, in flight, whether their hosts contain competitors, and (2) that plants reduce the production of specific herbivore-induced volatiles after a successful recruitment of their bodyguards. As the induced volatiles bear biosynthetic and ecological costs to plants, downregulation of their production has adaptive value. These findings add a new level of intricacy to plant–parasitoid interactions.  相似文献   

9.
The present study was undertaken to determine the effects of larval feeding experience on subsequent oviposition behavior of the resulting moths. Larvae of the cabbage looper (Trichoplusia ni, Noctuidae) and the diamondback moth (Plutella xylostella, Plutellidae) were exposed to the phenylpropanoid allelochemical trans-anethole (at 100 ppm fw in artificial diet) or the limonoid allelochemical toosendanin (10 ppm sprayed on cabbage leaves). Both compounds had been shown to deter oviposition in naïve moths in previous choice tests. Moths developing from experienced larvae (both sexes) showed a decrease in oviposition deterrence response when given a choice between control and treated leaves, unlike naïve moths. This phenomenon, analogous to habituation to feeding deterrents in lepidopteran larva, occurred irrespective of duration of feeding on the deterrent compound. We also observed that F1larvae resulting from experienced moths (previously exposed to toosendanin as larvae) grew as well on toosendanin-treated foliage as on control foliage. In contrast, growth of F1larvae from naïve moths was significantly impaired by toosendanin. These results demonstrate that host-selection behavior in cabbage looper (a generalist) and diamondback moth (a specialist) may be shaped by feeding experience according to Hopkins' Host Selection Principle in addition to chemical legacy.  相似文献   

10.
Changes in apple leaf chemistry after infestation by leafminers and their effect on both host location and host habitat location of the generalist parasitoid Pholetesor bicolor were investigated. Chemical analysis of leaf solvent extracts from healthy and leafminer-damaged leaves revealed that herbivory increased the amount of the triterpene squalene (C30H50), whereas quantities of all other identified compounds were similar in both plant treatments. To assess the response of parasitoids to host location cues, contact bioassays were conducted with naïve females. Results showed that parasitoids performed a characteristic ovipositional probing more often on the mine-damaged than on the healthy leaf. This behavior was triggered by a hexane extract of the mine-damaged leaf, but not by a healthy leaf extract. A synthetic mixture of the compounds identified in the extract triggered a similar response. A mixture devoid of squalene was not active, whereas squalene alone elicited the probing behavior. To assess the use of the identified compounds in habitat location, Y-tube olfactometer experiments were conducted with naïve and experienced females. Results showed that squalene is not involved in habitat location and has no priming effect on P. bicolor. While other triterpenes are known to mediate habitat location of parasitoids, this is the first report in which a plant triterpene is shown to mediate host location of a parasitoid. The biological and ecological functions of squalene on all three trophic levels are discussed.  相似文献   

11.
Many parasitic wasps are attracted to volatiles that are released by plants when attacked by potential hosts. The attractiveness of these semiochemicals from damaged plants has been demonstrated in many tritrophic systems, but the physiological mechanisms underlying the insect responses are poorly understood. We recorded the antennal perception by three parasitoids (Cotesia marginiventris, Microplitis rufiventris, and Campoletis sonorensis) to volatiles emitted by maize, cowpea, and cotton plants after attack by the common caterpillar pest Spodoptera littoralis. Gas chromatography-electroantennography (GC-EAG) recordings showed that wasps responded to many, but not all, of the compounds present at the physiologically relevant levels tested. Interestingly, some minor compounds, still unidentified, elicited strong responses from the wasps. These results indicate that wasps are able to detect many odorant compounds released by the plants. It remains to be determined how this information is processed and leads to the specific behavior of the parasitoids.  相似文献   

12.
Ticks and mites respond to a limited spectrum of stimuli in their search for hosts and mates. Airborne chemical signals include carbon dioxide, ammonia, organic acids, terpenoids, 2,6-dichlorophenol, and other phenolic compounds. These are detected primarily by sensilla in and adjacent to Haller's organ. Most ixodid species examined have one or more multiporose sensilla that detect such volatiles. These olfactoreceptors enable the ticks to respond to remote volatile chemicals from hosts and from the other ticks, e.g., sex pheromones. Other sensilla, probably mechanogustatory in function, also occur on the tarsi. Gustatory sensilla on the palps detect assembly pheromones that enable ticks and mites to respond to conspecific or heterospecific chemical stimuli in their environment. Responses to those stimuli in ticks result in clustering, i.e., arrestant behavior. Arrestant behavior also occurs in certain mites. Finally, cheliceral chemosensilla enable ticks to recognize specific phagostimulants in host blood, e.g., ATP and glutathione, that stimulate feeding. InDennacentor variabilis andD. andersoni, these same cheliceral chemosensilla recognize species-specific genital sex pheromones in the vulvae of conspecific mates, without which they do not copulate.  相似文献   

13.
The tropical rainforest shrub Piper cenocladum, which is normally defended against herbivores by a mutualistic ant, contains three amides that have various defensive functions. While the ants are effective primarily against specialist herbivores, we hypothesized that these secondary compounds would be effective against a wider range of insects, thus providing a broad array of defenses against herbivores. We also tested whether a mixture of amides would be more effective against herbivores than individual amides. Diets spiked with amides were offered to five herbivores: a naïve generalist caterpillar (Spodoptera frugiperda), two caterpillar species that are monophagous on P. cenocladum (Eois spp.), leaf-cutting ants (Atta cephalotes), and an omnivorous ant (Paraponera clavata). Amides had negative effects on all insects, whether they were naïve, experienced, generalized, or specialized feeders. For Spodoptera, amide mixtures caused decreased pupal weights and survivorship and increased development times. Eois pupal weights, larval mass gain, and development times were affected by additions of individual amides, but increased parasitism and lower survivorship were caused only by the amide mixture. Amide mixtures also deterred feeding by the two ant species, and crude plant extracts were strongly deterrent to P. clavata. The mixture of all three amides had the most dramatic deterrent and toxic effects across experiments, with the effects usually surpassing expected additive responses, indicating that these compounds can act synergistically against a wide array of herbivores.  相似文献   

14.
The effect of volatiles related to feeding activity of nonprey caterpillars, Spodoptera exigua, on the olfactory response of the predatory mites Phytoseiulus persimilis was examined in a Y-tube olfactometer. At a low caterpillar density (20 caterpillars on 10 Lima bean leaves), the predators were significantly more attracted to volatiles from infested leaves on which the caterpillars and their products were present or from infested leaves from which the caterpillars and their products had been removed when compared to volatiles from uninfested leaves. The predators, however, significantly avoided odors from 20 caterpillars and their products (mainly feces) removed from bean leaves. In contrast, at a higher caterpillar density (100 caterpillars on 10 Lima bean leaves), the predators avoided volatiles from caterpillar-infested bean leaves. Volatiles from infested leaves from which the caterpillars and their products had been removed were not preferred over volatiles from uninfested leaves. Volatiles from feces collected from 100 caterpillars were strongly avoided by the predators, while the behavior of the predatory mites was not affected by volatiles from 100 caterpillars removed from a plant. The data show that carnivorous arthropods may avoid nonprofitable herbivores. This avoidance seems to result from an interference of volatiles from herbivore products with the attraction to herbivore-induced plant volatiles.  相似文献   

15.
To elucidate the role of the plant lipoxygenase (LOX)/lyase pathway for host search behavior of two parasitic wasps attacking herbivorous larvae, an Arabidopsis mutant (all84) was isolated with a mutation somewhere in the LOX/lyase pathway. Detached leaves of the mutant were shown to release less (Z)-3-hexenal, a first green leaf volatile (GLV) product of the LOX/lyase pathway. The braconid larval parasitoids studied, Cotesia glomerata and Cotesia plutella, differ in their ability to discriminate among plant volatiles induced by feeding of lepidopteran hosts and nonhosts: C. plutella only responds to plant volatiles induced by hosts (Plutella larvae), whereas the response by the more generalist C. glomerata is not host specific. The Arabidopsis mutant all84 infested by Pieris larvae was less attractive to C. glomerata than Arabidopsis wild type (wt) infested by the host larvae. C. glomerata was attracted by two of the GLV biosynthesized through the LOX/lyase pathway, (E)-2-hexenal and (Z)-3-hexenyl acetate. However, attraction of C. plutellae to volatiles from Plutella-infested all84 plants did not differ from attraction to host-infested wt Arabidopsis. Both wasp species were arrested to the respective host-infested edge of the wt leaf by showing characteristic antennal searching behavior on the edge. In C. glomerata, the duration of this searching behavior at the infested leaf edge was significantly shorter on all84 plants than on wt plants. By contrast, the duration of the searching behavior of C. plutellae on the host-infested leaf edge of all84 was not significantly different from that on the wt leaf. These data suggest that the LOX/lyase pathway is directly involved in the production of attractants and arrestants important for host search behavior of the more generalist C. glomerata, but not for the specialist C. plutellae.  相似文献   

16.
It has been shown previously that sulfur volatiles produced byAllium plants affect the behavior of their specialist phytophages and of their specialist entomophages. The action of these compounds in protecting the leek mothAcrolepiopsis assectella against generalist entomophages was studied in comparison to the proposed original defensive role of these compounds against generalist herbivorous insects. Two ants species,Formica selysi andF. fusca, were used as generalist predators. Six behavioral criteria of the predatory behavior of the ants were studied in presence of the last-instar caterpillars (C5). C5 reared on artificial diets with or without leek components were tested, as well as C5 soaked in frass of leek-reared caterpillars or disulfide solutions. In addition, the response of the ants to pure chemicals found in leek was studied using honey solutions with or without sulfur compounds. The sulfur allelochemicals ofAllium plants have a negative action on predatory ants. Interestingly, the nonvolatile precursors of sulfur volatiles ofAllium plants seem to have a protective role for their phytophagous insects against generalist entomophages.  相似文献   

17.
When attacked by herbivorous insects, many plants emit volatile compounds that are used as cues by predators and parasitoids foraging for prey or hosts. While such interactions have been demonstrated in several host–plant complexes, in most studies, the herbivores involved are leaf-feeding arthropods. We studied the long-range plant volatiles involved in host location in a system based on a very different interaction since the herbivore is a fly whose larvae feed on the roots of cole plants in the cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae). The parasitoid studied is Trybliographa rapae Westwood (Hymenoptera: Figitidae), a specialist larval endoparasitoid of D. radicum. Using a four-arm olfactometer, the attraction of naive T. rapae females toward uninfested and infested turnip plants was investigated. T. rapae females were not attracted to volatiles emanating from uninfested plants, whether presented as whole plants, roots, or leaves. In contrast, they were highly attracted to volatiles emitted by roots infested with D. radicum larvae, by undamaged parts of infested roots, and by undamaged leaves of infested plants. The production of parasitoid-attracting volatiles appeared to be systemic in this particular tritrophic system. The possible factors triggering this volatile emission were also investigated. Volatiles from leaves of water-stressed plants and artificially damaged plants were not attractive to T. rapae females, while volatiles emitted by leaves of artificially damaged plants treated with crushed D. radicum larvae were highly attractive. However, T. rapae females were not attracted to volatiles emitted by artificially damaged plants treated only with crushed salivary glands from D. radicum larvae. These results demonstrate the systemic production of herbivore-induced volatiles in this host-plant complex. Although the emission of parasitoid attracting volatiles is induced by factors present in the herbivorous host, their exact origin remains unclear. The probable nature of the volatiles involved and the possible origin of the elicitor of volatiles release are discussed.  相似文献   

18.
In Y-tube olfactometer bioassays, adult Apanteles carpatus (Say), were attracted to beaver or rabbit pelts infested with larvae of the casemaking clothes moth (CCM)Tinea pellionella L. Porapak Q-captured volatiles from a CCM-infested beaver pelt were also very attractive, whereas isolated CCM larvae or larval feces were not. Coupled gas chromatographic–electroantennographic detection (GC-EAD) analysis of the Porapak Q volatile extract revealed two compounds that elicited responses by A. carpatus antennae. Coupled GC–mass spectrometry (MS) in electron impact and chemical ionization modes of these compounds indicated, and GC-MS and GC-EAD of authentic standards confirmed, that they were nonanal and geranylacetone. While each compound singly did not attract A. carpatusa 1:1 blend of both compounds was as attractive as the volatile extract. Because these compounds are host habitat-derivedA. carpatus must be a habitat rather than host specialist, responding to kairomonal indicators of localized and specific habitats such as animal hair or feather. The tritrophic interaction between A. carpatusits clothes moth hosts and their animal-derived habitats is similar to the well-studied relationship between parasitoids of insect herbivores and their host plant habitats.  相似文献   

19.
Volatiles from lesser grain borers,Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), were collected on Porapak Q, and those from the male beetles were shown to contain two compounds, that were attractive individually and in combination to both sexes. These compounds were identified as (S)-(+)-1-methylbutyl (E)-2-methyl-2-pentenoate and (S)-(+)-1-methylbutyl (E)-2,4-dimethyl-2-pentenoate by spectrometry and comparison with synthesized compounds. The two compounds have been assigned the trivial names dominicalure 1 and dominicalure 2, respectively. Synthesized samples of these compounds, individually and in combination, were effective in trapping both sexes in field studies.Presented in part at the Northeastern Regional Meeting of the American Chemical Society, June 25–28, 1978, Boston.Approved as TA-14927 by the director of the Texas Agricultural Experiment Station in cooperation with the USDA-FR-SEA.  相似文献   

20.
A large body of evidence shows that plants release volatile chemicals upon attack by herbivores. These volatiles influence the performance of natural enemies. Nearly all the evidence on the effect of plant volatiles on natural enemies of herbivores concerns predators, parasitoids, and entomophagous nematodes. However, other entomopathogens, such as fungi, have not been studied yet for the way they exploit the chemical information that the plant conveys on the presence of herbivores. We tested the hypothesis that volatiles emanating from cassava plants infested by green mites (Mononychellus tanajoa) trigger sporulation in three isolates of the acaropathogenic fungus Neozygites tanajoae. Tests were conducted under climatic conditions optimal to fungal conidiation, such that the influence of the plant volatiles could only alter the quantity of conidia produced. For two isolates (Altal.brz and Colal.brz), it was found that, compared with clean air, the presence of volatiles from clean, excised leaf discs suppressed conidia production. This suppressive effect disappeared in the presence of herbivore-damaged leaves for the isolate Colal.brz. For the third isolate, no significant effects were observed. Another experiment differing mainly in the amount of volatiles showed that two isolates produced more conidia when exposed to herbivore-damaged leaves compared with clean air. Taken together, the results show that volatiles from clean plants suppress conidiation, whereas herbivore-induced plant volatiles promote conidiation of N. tanajoae. These opposing effects suggest that the entomopathogenic fungus tunes the release of spores to herbivore-induced plant signals indicating the presence of hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号