首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
210Pb and226Ra profiles have been measured at five GEOSECS stations in the Circumpolar region. These profiles show that226Ra is quite uniformly distributed throughout the Circumpolar region, with slightly lower activities in surface waters, while210Pb varies with depth as well as location or area. There is a subsurface210Pb maximum which matches the oxygen minimum in depth and roughly correlates with the temperature and salinity maxima. This210Pb maximum has its highest concentrations in the Atlantic sector and appears to originate near the South Sandwich Islands northeast of the Weddell Sea. Concentrations in this maximum decrease toward the Indian Ocean sector and then become fairly constant along the easterly Circumpolar Current.Relative to226Ra, the activity of210Pb is deficient in the entire water column of the Circumpolar waters. The deficiency increases from the depth of the210Pb maximum toward the bottom, and the210Pb/226Ra activity ratio is lowest in the Antarctic Bottom Water, indicating a rapid removal of Pb by particulate scavenging in the bottom layer and/or a short mean residence time of the Antarctic Bottom Water in the Circumpolar region.226Ra is essentially linearly correlated with silica and barium in the Circumpolar waters. However, close examination of the vertical profiles reveals that Ba and Si are more variable than226Ra in this region.  相似文献   

2.
Profiles of226Ra and dissolved210Pb have been measured at several stations in the Red Sea. At one station in the central Red Sea an expanded profile was measured including226Ra and dissolved and particulate210Pb and210Po. These profiles show several distinct features: (1)226Ra displays a mid-depth maximum of about 13 dpm/100 kg at about 500 m; (2) dissolved210Pb concentrations are uniformly low at about 2 dpm/100 kg with little lateral or vertical variation; (3) the surface-water210Pb excess which is commonly observed in low-latitude open ocean regions is entirely lacking; (4)210Pb and210Po activities are essentially identical to each other in both particulate and dissolved phases although210Po activities appear somewhat lower; (5) about 20% of the210Pb and210Po in the water column residues on particulate matter.Assuming the atmospheric210Pb flux to be in the dissolved form and at the lower level of the normal range i.e. 0.5 dpm/cm2 yr, the residence time of the dissolved Pb is about 1.5 years. However, if the same atmospheric flux is entirely in particulate form, then the residence time of the dissolved Pb is about 5 years. The residence time of Pb in the particulate phase is less than 0.4 years if all the Pb is removed only by sinking particles.  相似文献   

3.
We report here on particulate and dissolved210Pb profiles at 16 stations, and on total210Pb profiles at 3 stations, all occupied during the Pacific GEOSECS expedition. Comparison with measurements at Yale on GEOSECS library samples indicates that during separation of particulate lead from dissolved lead, our filtered water samples suffered some loss of210Pb in the filtration system; this effect appears to have reduced the dissolved210Pb activities by ~ 20% in stations where the water was filtered. However, for these first Pacific data on the210Pb distribution between the two phases, this effect does not significantly interfere with our recognition of the major features of both particulate and dissolved210Pb distributions.The dissolved210Pb profiles in general vary geographically, following the226Ra profiles. In deep water,226Ra increases northward and eastward from the southwest Pacific, from ~ 22dpm/100kg, to over 40 dpm/100 kg in the northeast Pacific. Our dissolved210Pb profiles show a similar increase in deep water, varying from about 10 to 20 dpm/100 kg along this line, and are commonly characterized by a mid-depth maximum. This210Pb maximum reflects the mid-depth226Ra maximum of the Pacific Deep Water observed along the western boundary current.In surface water at low latitudes there is a significant210Pb flux from the atmosphere, which produces a210Pb/226Ra activity ratio generally greater than unity. This flux penetrates as deep as 600 m, as indicated by an “induced”210Pb minimum caused by the surface maximum. The surface water210Pb excess decreases toward high southern latitudes and vanishes in the Circumpolar region.The particulate210Pb profiles show a general increase with depth, from ~ 0.3dpm/100kg in subsurface water to ~ 1.5dpm/100kg in bottom water, with or without a mid-depth maximum that reflects the226Ra or dissolved210Pb maximum. The particulate210Pb normally comprises about 2% of the total210Pb in subsurface water, and this fraction increases to about 10% near the bottom. As the filtration loss is not taken into account, the fraction of particulate210Pb quoted here is an upper limit. Since the particulate matter concentrations are quite uniform in the water column below a few hundred meters, the210Pb activity of the particulate matter also increases with depth. The particulate matter has a210Pb concentration of ~ 100dpm/g in subsurface water, but the concentration increases to ~ 500dpm/g or more toward the bottom. This indicates that there is a cumulative adsorption of Pb onto the suspended particles as they are sinking through the water column.  相似文献   

4.
226Ra data on eleven vertical profiles taken during the GEOSECS program from the Antarctic Ocean and its vicinity in both the Atlantic and the Pacific are presented. Replicate measurements were made on each sample using the Rn-emanation method. The precision (1 σ) based on triplicate analyses averages about ±2.5%. Waters all around the Antarctic continent below 2 km depth appear to exhibit a uniform226Ra concentration of 21.5 ± 1dpm/100kg, except perhaps locally such as the Ross Sea and the Drake Passage where small variations may be present. Higher in the water column, the226Ra contents decrease toward the surface with gradients which vary as a function of the influence exerted by the Antarctic Convergence. Across this oceanic front, a north-to-south increase of226Ra occurs (the increase being the largest near the surface: from 8 to 18 dpm/100 kg), reflecting the combining effect of deep-water upwelling and meridional water mixing. The core layer of the Antarctic Intermediate Water contains about 14 dpm/100 kg of226Ra and that of the Circumpolar Intermediate Water (O2 minimum and local T maximum) about 18 dpm/100 kg. To a first approximation,226Ra covaries with Si in the circumpolar waters.  相似文献   

5.
Based on results obtained during the GEOSECS program the primary features of the distribution of226Ra in the Atlantic Ocean can be defined. Outside the Antarctic no significant variation has been found in the226Ra content of surface waters. Eighty samples yield an average of 7.4 dpm/100 kg (normalized to a salinity of 35.00‰). Deep waters in the central Atlantic have226Ra contents several dpm/100 kg higher than expected from the mixing of Antarctic Bottom Water (21.3 dpm/100 kg) and basal North Atlantic Deep Water (10.3 dpm/100 kg). These excesses correlate well with deficiencies in O2 and excesses in SiO2. The intermediate water226Ra maximum in the South Atlantic is associated with the inflow of low-oxygen Circumpolar Intermediate Water beneath the Antarctic Intermediate Water.  相似文献   

6.
Disequilibrium between210Po and210Pb and between210Pb and226Ra has been mapped in the eastern and central Indian Ocean based on stations from Legs 3 and 4 of the GEOSECS Indian Ocean expedition.210Po/210Pb activity ratios are less than 1.0 in the surface mixed layer and indicate a residence time for Po of 0.6 years.210Po and210Pb are generally in radioactive equilibrium elsewhere in the water column except at depths of 100–500 m, where Po may be returned to solution after removal from the surface water, and in samples taken near the bottom at a few stations.210Pb excesses relative to226Ra are observed in the surface water but these excesses are not as pronounced as in the North Pacific and North Atlantic. The difference is attributable to a lower flux of210Pb from the atmosphere to the Indian Ocean. Below the main thermocline,210Pb activities increase with depth to a broad maximum before decreasing to lower values near the bottom. Departures from this pattern are especially evident at stations taken in the Bay of Bengal (where210Pb/226Ra activity ratios as low as 0.16 are observed) and near the Mid-Indian Ridge. The data suggest that removal of210Pb at oceanic boundaries, coupled with eddy diffusion along isopycnals, can explain gradients in210Pb near the boundary. Application of a simple model including isopycnal diffusion, chemical removal, production and radioactive decay produces fits the observed210Pb/226Ra gradients for eddy diffusion coeffients of ~ 107 cm2/s. High productivity in surface waters of the Bay of Bengal makes this region a sink for reactive nuclides in the northern Indian Ocean.  相似文献   

7.
The progressive weakening and final disappearance (in 1979) of the long-term meromictic structure of the Dead Sea are clearly reflected in the depth profiles of210Pb and210Po. In 1977/78, prior to overturn, dissolved210Pb (35–50 dpm kg?1) predominated over particulate210Pb (1–2 dpm kg?1) in the oxic upper waters, whereas the reverse was true in the anoxic deep waters (16–20 dpm kg?1 particulate vs. 2–5 dpm kg?1 dissolved). The exact extent of the disequilibrium between210Pb and226Ra is hard to evaluate in the upper oxic layers, because the progressive deepenings resulted in mixing with deep waters. By contrast, one can estimate the residence time of dissolved210Pb in the unperturbed anoxic deepest layers, because these remained isolated, at about 3 years. Following the overturn of 1979, dissolved210Pb exceeded particulate210Pb at all depths. The210Po profiles of the stratified lake resembled in shape those of its grandparent210Pb, but with distinct characteristics of their own in the oxic upper waters where particulate210Po (8–12 dpm kg?1) was greatly in excess over particulate210Pb, while dissolved210Po (25–40 dpm kg?1) was slightly deficient. Immediately following the overturn, dissolved and particulate210Po were similar (about 15 dpm kg?1), at all depths. The destruction of the lake's meromictic structure was accompanied by a reduction of its210Pb inventory, while that of210Po was almost unaffected. Thus, at overturn a transient state was created with the inventory of210Po exceeding that of210Pb.  相似文献   

8.
The distribution of210Po and210Po in dissolved (<0.4 μm) and particulate (>0.4 μm) phases has been measured at ten stations in the tropical and eastern North Atlantic and at two stations in the Pacific. Both radionuclides occur principally in the dissolved phase. Unsupported210Pb activities, maintained by flux from the atmosphere, are present in the surface mixed layer and penetrate into the thermocline to depths of about 500 m. Dissolved210Po is ordinarily present in the mixed layer at less than equilibrium concentrations, suggesting rapid biological removal of this nuclide. Particulate matter is enriched in210Po, with210Po/210Pb activity ratios greater than 1.0, similar to those reported for phytoplankton. Box-model calculations yield a 2.5-year residence time for210Pb and a 0.6-year residence time for210Po in the mixed layer. These residence times are considerably longer than the time calculated for turnover of particles in the mixed layer (about 0.1 year). At depths of 100–300 m,210Po maxima occur and unsupported210Po is frequently present. Calculations indicate that at least 50% of the210Po removed from the mixed layer is recycled within the thermocline. Similar calculations for210Pb suggest much lower recycling efficiencies.Comparison of the210Pb distribution with the reported distribution of226Ra at nearby GEOSECS stations has confirmed the widespread existence of a210Pb/226Ra disequilibrium in the deep sea. Vertical profiles of particulate210Pb were used to test the hypothesis that210Pb is removed from deep water by in-situ scavenging. With the exception of one profile taken near the Mid-Atlantic Ridge, significant vertical gradients in particulate210Pb concentration were not observed, and it is necessary to invoke exceptionally high particle sinking velocities to account for the inferred210Pb flux. It is proposed instead that an additional sink for210Pb in the deep sea must be sought. Estimates of the dissolved210Pb/226Ra activity ratio at depths greater than 1000 m range from 0.2 to 0.8 and reveal a systematic increase, in both vertical and horizontal directions, with increasing distance from the sea floor. This observation implies rapid scavenging of210Pb at the sediment-water interface and is consistent with a horizontal eddy diffusivity of 3?6 × 107 cm2/sec. The more reactive element Po, on the other hand, shows evidence of rapid in-situ scavenging. In filtered seawater,210Po is deficient, on the average, by ca. 10% relative to210Pb; a corresponding enrichment is found in the particulate phase. Total inventories of210Pb and210Po over the entire water column, however, show no significant departure from secular equilibrium.  相似文献   

9.
Recent radium measurements from the near-surface Caribbean Sea are presented. The surface horizontal and vertical distributions of226Ra are essentially the same as reported by Szabo et al. (1967) for the early 1960's. The226Ra activity at the surface is relatively uniform across the Caribbean, with an average of8.2±0.4dpm/100kg. The subsurface distribution to ~200 m averages7.8±0.4dpm/100kg and increases slowly below 200 m. reaching ~9.5 dpm/100 kg at 560 m. In contrast to226Ra, the surface concentration of228Ra was much more variable in both time and space. An average increase of 33% was found between 1968 and 1976 in the western Caribbean and during both years an anomalously high228Ra activity was found in the eastern Caribbean. These data support previous hypotheses that water entering the eastern Caribbean has been enriched in228Ra prior to entry and that variable mixing of the Atlantic water masses found to the northeast and southeast of the Lesser Antilles may produce temporal variations in the near-surface228Ra activity. Scatter plots of228Ra vs. salinity and sigma-t indicate that the near-surface vertical distribution of228Ra in the Caribbean Sea is predominantly influenced by advection. Thus228Ra cannot be used to study near-surface vertical mixing rates in this region.  相似文献   

10.
Four vertical Ra profiles have been measured across the East Pacific Rise (EPR) from Callao to Tahiti. These profiles show that Ra in the deep water (below 2 km depth) increases toward the EPR. However, this increase does not necessarily indicate a Ra source on the EPR. The increase from Tahiti toward the EPR reflects the general trend of the Pacific Ra distribution. The decrease from the EPR eastward to the Peru Basin is probably due to the continental effect with higher sedimentation rates.The hydrography, especially potential temperature and oxygen, indicates significant differences below about 3 km depth between the east and west flanks of the EPR indicating the effect of the cold bottom water to the west of the EPR. The benthic front is identified at 3.9 km depth at the westernmost station near Tahiti. Silicate and salinity data are by no means unique and reflect a complicated local circulation and mixing pattern with a minor intrusion of the Antarctic Bottom Water from the south into the Peru Basin.The θ-Ra and Ra-Si relationships both indicate an enrichment of Ra in the deep water below 2 km depth probably due to input from the underlying sediments. Above 2 km depth, Ra covaries almost linearly with θ as well as Si, mimicking a stable conservative property. This suggests that the radiodecay rate is nearly balanced by the input rate within the water column between 1 and 2 km depth in which θ is linearly correlated withS.Simple vertical model calculations show that the in-situ production of Ra by particulate dissolution in the deep water is negligible within a reasonable range of upwelling rates from 2 to 12 m/yr. Thus the Ra profiles show a net decay effect and so the θ-Ra relations are not linear in the deep water. In fact, the composite θ-Ra plots show a break at 25 dpm/100 kg (at 2 km depth) rather than a smooth curve, while theθ-S plots are essentially linear. A maximum Ra production rate of about 8 × 10?3 (dpm/100 kg) yr?1 is obtained from all the profiles with minimum upwelling rates between 0.7 and 3.5 m/yr.  相似文献   

11.
Two ocean profiles from the Peru Basin from regions with different surface productivities were analyzed for total210Pb and201Po to evaluate the influence of particulates in the water column on their distribution. Comparison with a published226Ra profile for the region was made. The profile closest to the coast, where upwelling and productivity are high, shows depletion of210Pb relative to226Ra at all depths, with particularly marked excursions from radioactive equilibrium at the surface and in the bottom water.210Po appears to be deficient relative to210Pb at depth as well. Mean residence times in the deep water, relative to particulate removal from the water column to the sediments, of about 100 years for210Pb and about two years for210Po are indicated. The profile northwest of the upwelling region shows the226Ra210Pb210Po system close to equilibrium at all depths to 1500 m (except for the effect of atmospheric210Pb input seen at the surface.  相似文献   

12.
226Ra,210Pb and210Po were measured in oceanic profiles at two stations near the Bonin and Kurile trenches.210Po is depleted by 50% on average relative to210Pb in the surface water. In the deep water,210Pb is about 25% deficient relative to226Ra. Based on the deficiency,210Pb residence time with respect to removal by particulate matter was estimated to be less than 96 years in the deep water.210Pb deficiency in the bottom water was significantly greater than that of the adjacent deep water, indicating more effective removal near or at the bottom interface.210Pb,210Po and Th appear to have similar overall rate constants of particulate removal throughout the water column.  相似文献   

13.
An inverse model is applied for the analysis of hydrographic and current meter data collected on the repeat WOCE section SR4 in the Weddell Sea in 1989–1992. The section crosses the Weddell Sea cyclonic gyre from Kapp Norvegia to the northern end of the Antarctic Peninsula. The concepts of geostrophy, conservation of planetary vorticity and hydrostatics are combined with advective balances of active and passive properties to provide a dynamically consistent circulation pattern. Our variational assimilation scheme allows the calculation of three-dimensional velocities in the section plane. Current speeds are small except along the coasts where they reach up to 12 cm/s. We diagnose a gyre transport of 34 Sverdrup which is associated with a poleward heat transport of 28 × 1012 W corresponding to an average heat flux of 15 Wm–2 in the Weddell Sea south of the transect. This exceeds the estimated local flux on the transect of 2 Wm–2. As the transect is located mostly in the open ocean, we conclude that the shelf areas contribute significantly to the ocean-atmosphere exchange and are consequently key areas for the contribution of the Weddell Sea to global ocean ventilation. Conversion of water masses occuring south of the section transform 6.6 ± 1.1 Sv of the inflowing warm deep water into approximately equal amounts of Weddell Sea deep water and Weddell Sea bottom water. The volume transport of surface water equals in the in-and outflow. This means that almost all newly formed surface water is involved in the deep and bottom water formation. Comparison with the results obtained by pure velocity interpolation combined with a hydrographic data subset indicates major differences in the derived salt transports and the water mass conversion of the surface water. The differences can be explained by deviations in the structure of the upper ocean currents to which shelf areas contribute significantly. Additionally a rigorous variance analysis is performed. When only hydrographic data are used for the inversion both the gyre transport and the poleward heat transport are substantially lower. They amount to less than 40% of our best estimate while the standard deviations of both quantities are 6.5 Sv and 37 × 1012 W, respectively. With the help of long-term current meter measurements these errors can be reduced to 2 Sv and 8 × 1012 W. Our result underlines the importance of velocity data or equivalent information that helps to estimate the absolute velocities.  相似文献   

14.
The vertical distributions of210Pb and226Ra in the Santa Barbara Basin have been measured. The210Pb/226Ra activity ratio is close to unity in surface water, but ranges from 0.2 to 0.6 in deep water with a mean value of 0.3 (d > 250m), suggesting rapid removal of210Pb from the water column. The210Pb concentrations in the particulate phase at different water depths indicate that the removal of210Pb is due to adsorption on settling particles.It is estimated that the particulate210Pb contributes about 50–70% of the total210Pb measured on unfiltered water samples of the Santa Barbara Basin. The fate of210Pb (and Pb) in the water column is thus strongly controlled by the settling particles, which have a mean residence time of one year or less in the basin. Material balance calculation for210Pb in the basin suggests that there is an external source supplying about 70–80% of the210Pb observed in particulate material or sediments. This excess210Pb is most likely provided by particles entering the basin loaded already with210Pb.  相似文献   

15.
210Pb in the surface water of the North Pacific was extensively determined. The results showed that the highest concentrations of210Pb of 19 ± 3dpm/100kg were found in the northern mid-latitudes around 30°N, but longitudinal variation across the North Pacific was not observed. The mean residence time of210Pb in the surface water up to 100 m in depth is calculated to be 230 days. In the mid-latitudes of the northern hemisphere,210Pb may be transported by the prevailing westerly wind of a higher speed than 15 m/sec, likely the jet stream.  相似文献   

16.
Activities of 238U, 228Ra, 226Ra and 210Pb were determined in submarine hydrothermal massive sulfides by nondestructive, gamma-ray spectrometry. The samples were collected by the manned submersible DSRV “Alvin” from active hydrothermal fields on the Endeavour Segment and Axial Seamount of the Juan de Fuca Ridge. 210Pb activities are mostly below the equilibrium level with 226Ra, which is linearly correlated with the concentration of Ba, Sr and Ca in the deposits. The ratios of226Ra to the alkaline earth elements indicate that hydrothermal alteration of the underlying oceanic crust is the dominant source of Ra in the sulfide deposits.The 210Pb/Pb ratios measured in many of the sulfides are higher than the ratio obtained for a basalt source of 210Pb, probably because of 210Pb ingrowth from 226Ra within the sulfide deposits. An isochron approach employing ratios of 210Pb/Pb and 226Ra/Pb yielded an initial 210Pb/Pb ratio in the range of 0–0.57 dpm/μg Pb, implying that the crustal residence time of the hydrothermal fluid in the Endeavour Segment is very short ( < 10 years) and that basalt alteration is the only source of the 210Pb and Pb. For the hydrothermal fluid in Axial Seamount, a residence time of 10–20 years is estimated on the basis of the initial 210Pb/Pb and 228Ra/226Ra ratios of a sulfide chimney. Both residence time estimates are consistent with the results of previous studies. We have estimated the upper limits of sample ages ranging from tens to a hundred years for 12 samples, with the remaining seven samples indicating ages close to or older than 150 years, the practical limit of the 210Pb/Pb dating technique.A concentrically sectioned sulfide chimney from Axial Seamount yielded mean radial growth rates ranging from a few tenths to a few mm/year based on gradients of 210Pb/Pb and 228Ra/226Ra activity ratios, whereas a similarly sectioned chimney from the Endeavour Segment, although collected from the top of an active “black smoker” vent, displayed no 210Pb or 228Ra activity. Our results have implications for the duration and periodicity of hydrothermal circulation and associated mineral deposition at mid-ocean ridges.  相似文献   

17.
Activities of the naturally occurring radionuclides, 210Pb and 210Po, were measured in both dissolved (<0.45 μm) and particulate (>0.45 μm) phases from surface waters of the southern South China Sea. The average activity of particulate 210Pb, 0.23 Bq/m3 (n=23), accounted for about 12% of the total 210Pb, which corresponds with values of open oceans. Particulate 210Po, with an average activity of 0.43 Bq/m3, accounted for about 40% of the total 210Po, which was much higher than those of open and eutrophic oceans. The residence times of total 210Po and 210Pb in surface waters estimated from an irreversible steady-state model were 0.82 a and 1.16 a, respectively. The consistently high fractionation factor calculated either by scavenging rate constants (5.42) or Kd values (6.69) suggested that a significant fractionation occurred between 210Po and 210Pb during their removal from solution to particles and that the two radionuclides had different biogeochemical cycling pathways in the oligotrophic South China Sea. Furthermore, our results indicated that there exist different fractionation mechanisms between 210Po and 210Pb in different marine environments: in eutrophic ocean, plankton detritus and fecal pellets are the main carrier of 210Po and 210Pb, by which 210Po and 210Pb have been scavenged and removed; while in oligotrophic ocean, microbes could become the main carrier of 210Po and fractionate 210Po and 210Pb significantly as a result of scarce plankton detritus and fecal pellets. These results suggest the use of 210Po to trace marine biogeochemical processes relating to microbial activities and the cycling of sulfur group elements (S, Se, Te and Po).  相似文献   

18.
Sediment samples were recovered from the central equatorial Pacific Ocean, sectioned at 1-mm intervals, and analyzed for porosity, organic carbon, excess210Pb and CaCO3. Steep porosity gradients were measured in the upper 1 cm of the sediment column with extremely high values observed near the sediment surface. Similarly, particulate organic carbon contents are highest at the sediment surface, decrease sharply in the upper 1 cm, and are relatively constant between 1 and 5 cm. CaCO3 values, on the other hand, are lowest at the sediment surface and increase to a constant value below 5–10 mm depth. At the carbonate ooze sites, excess210Pb is present throughout the upper 5 cm of the sediments suggesting relatively rapid particle mixing rates. However, extremely high excess210Pb activities (> 100 dpm/g) are observed at the sediment surface with sharp gradients present in the upper 1 cm which would suggest slow rates of mixing. This apparent contradiction along with the major features of the CaCO3 and particulate organic carbon profiles can be explained by a particle-selective feeding mechanism in which organic carbon, excess210Pb-enriched particles are preferentially maintained at the sediment surface via ingestion and defecation by benthic organisms.  相似文献   

19.
Particulate and soluble,210Pb activities have been measured by filtration of large-volume water samples at two stations in the South Atlantic. Particulate phase210Pb (caught by a 0.4-μm filter) varies from 0.3% of total210Pb in equatorial surface water to 15% in the bottom water. The “absolute activity” of210Pb per unit mass of particulate matter is about 107 times the activity of soluble210Pb per unit mass of water, but because the mass ratio of particulate matter to water is about 10?8, the particulate phase carries only about 10% of the total activity. In Antarctic surface water the particulate phase carries 40% of the total210Pb activity; the absolute activity of this material is about the same as in other water masses and the higher fraction is due to the much larger concentration of suspended matter in surface water in this region.In the equatorial Atlantic the particulate phase210Pb activity increases with depth, by a factor of 40 from surface to bottom, and by a factor of 4 from the Antarctic Intermediate Water core to the Antarctic Bottom Water. This increase with depth is predicted by our previously proposed particulate scavenging model which indicated a scavenging residence time of 50 years for210Pb in the deep sea. A scavenging experiment showed that red clay sediment removes all the210Pb from seawater in less than a week. The Antarctic particulate profile shows little or no evidence of scavenging in this region, which may be due to the siliceous nature of the particulate phase in circumpolar waters. Our previous observation that the210Pb/226Ra activity ratio is of the order of 0.5 in the deep water is further confirmed by the two South Atlantic profiles analyzed in the present work.  相似文献   

20.
By modelling the observed distribution of210Pb and210Po in surface waters of the Pacific, residence times relative to particulate removal are determined. For the center of the North Pacific gyre these are τPo = 0.6years andτPb = 1.7years. The surface ocean τPb is determined by particulate transport rather than plankton settling. The fact that it is about two orders of magnitude smaller than τPb for the deep ocean implies a sharp change in the adsorptive quality of particles during descent through the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号