首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The South Caspian Basin has accumulated a sedimentary succession ~20 km thick. Roughly half of this was deposited in the last 5.5 Ma, mainly in the largely lower Pliocene, fluvio‐lacustrine Productive Series, which is also the principal hydrocarbon reservoir succession in the basin. Heavy mineral data identify different sediment sources for both Productive Series sandstones and modern river sands. Lesser Caucasus sediment was supplied by the Palaeo‐Kura into the western part of the South Caspian Basin. Productive Series strata in the north of the basin were supplied by the Palaeo‐Volga, and represent a mixture of sediment from the Greater Caucasus and Russian Platform/Urals. Greater Caucasus sand input to the Palaeo‐Volga increased at the start of deposition of the Pereriva Suite, which is an important reservoir subunit of the Productive Series. We interpret this provenance shift as indicating enhanced uplift and exhumation of the Greater Caucasus within the Pliocene, during regional re‐organization of the Arabia–Eurasia collision, although late Cenozoic climate changes may have played a role.  相似文献   

2.
《Basin Research》2018,30(5):835-862
We used detrital zircon U/Pb geochronology and apatite (U–Th–Sm)/He thermochronology to better constrain depositional ages and sedimentation rates for the Pliocene Productive Series in Azerbaijan. U/Pb analysis of 1,379 detrital zircon grains and (U–Th–Sm)/He analysis of 57 apatite grains—from Kirmaky Valley and Yasamal Valley onshore sections, Absheron Peninsula—yielded two distinct sub‐populations: “young” Neogene grains and “old” Mesozoic, Palaeozoic and Proterozoic/Archean grains. The large numbers of Neogene age grains (around 10% of all grain ages) provided a new absolute age constraint on the maximum depositional age of the Lower Productive Series of 4.0 Myr. These “young” Neogene zircon grains most likely originated from volcanic ash falls sourced from the Lesser Caucasus or Talesh Mountains. In this paper we propose a timescale scenario using the maximum depositional age of the Productive Series from detrital zircon grain U/Pb constraints. Potential consequences and limitations of using apatite (U–Th–Sm)/He dating method in estimating maximum depositional ages are also discussed. These new age constraints for the Lower Productive Series gave much faster sedimentation rates than previously estimated: 1.3 km/Myr in the South Caspian Basin margin outcrops and up to 3.9 km/Myr in the basin centre. The sedimentation rates are one of the highest in comparison to other sedimentary basins and coeval to global increase in sedimentation rates 2–4 Myr. The older group of detrital zircon grains constitutes the majority of grains in all sample sets (~80%). These older ages are inferred to reflect the provenance of the Productive Series sediment. This sediment is interpreted to have been derived from the Proterozoic and Archean crystalline basement rocks and Phanerozoic cover of the East European Craton, Proterozoic/Palaeozoic rocks of the Ural Mountains and Mesozoic sedimentary rocks of the Greater Caucasus. This sediment was likely supplied from northerly sourced drainage that emptied into the South Caspian Basin.  相似文献   

3.
The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (ca. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (ca. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.  相似文献   

4.
Apatite fission‐track (AFT) thermochronology and (U‐Th)/He (AHe) dating, combined with paleothermometers and independent geologic constraints, are used to model the thermal history of Devonian Catskill delta wedge strata. The timing and rates of cooling determines the likely post‐orogenic exhumation history of the northern Appalachian Foreland Basin (NAB) in New York and Pennsylvania. AFT ages generally young from west to east, decreasing from ~185 to 120 Ma. AHe single‐grain ages range from ~188 to 116 Ma. Models show that this part of the Appalachian foreland basin experienced a non‐uniform, multi‐stage cooling history. Cooling rates vary over time, ~1–2 °C/Myr in the Early Jurassic to Early Cretaceous, ~0.15–0.25 °C/Myr from the Early Cretaceous to Late Cenozoic, and ~1–2 °C/Myr beginning in the Miocene. Our results from the Mesozoic are broadly consistent with earlier studies, but with the integration of multiple thermochronometers and multi‐kinetic annealing algorithms in newer inverse thermal modeling programs, we constrain a Late Cenozoic increase in cooling which had been previously enigmatic in eastern U.S. low‐temperature thermochronology datasets. Multi‐stage cooling and exhumation of the NAB is driven by post‐orogenic basin inversion and catchment drainage reorganization, in response to changes in base level due to rifting, plus isostatic and dynamic topographic processes modified by flexure over the long (~200 Myr) post‐orogenic period. This study compliments other regional exhumation data‐sets, while constraining the timing of post‐orogenic cooling and exhumation in the NAB and contributing important insights on the post‐orogenic development and inversion of foreland basins along passive margins.  相似文献   

5.
Magallanes–Austral Basin (MAB) fill is preserved along a >1000 km north–south trending outcrop belt in the southern Patagonia region of Argentina and Chile. Although the stratigraphic evolution of the MAB has been well documented in the Chilean sector (referred to as the Magallanes Basin), its northern terminus in southern Argentina (Austral Basin) is poorly constrained. We present new stratigraphic and geochronologic analyses of the early basin fill (Aptian–Turonian) from the Argentine sector (49–51°S) of the MAB to document spatial variability in stratigraphy and timing of deposition during the initial stages of basin evolution. The initiation of the retroarc foreland basin fill is marked by the transition from mudstone to coarse‐clastic deposition, which is characterised by the consistent presence of sandstone beds > ca. 20 cm thick interpreted to represent sediment gravity flows deposited in a submarine fan system. Depositional environments within the early fill of the basin range from lower to upper deep‐water fan settings as well as previously undocumented slope deposits. These facies are present as far north as El Chalten, Argentina (ca. 49°S), indicating that facies‐equivalent rocks can be traced along‐strike for at least 5 degrees of latitude, based on correlation with strata as far south as the Cordillera Darwin (ca. 54°S). Eight new U‐Pb zircon ages from ash beds reveal an overall southward younging trend in the initiation of coarse clastic deposition. Inferred depositional ages range from ca. 115 ± 1.9 Ma in the northernmost study area to not older than 92 ± 1 Ma and 89 ± 1.5 Ma in the central and southern sectors respectively. The apparent diachronous delivery of coarse detritus into the basin may reflect (1) gradual southward progradation of a deep‐water fan system from a northerly point source and/or (2) orogen‐parallel variations in the timing and magnitude of thrust‐belt deformation and erosion that provided more local sources for sediment delivery.  相似文献   

6.
The intermontane Quebrada de Humahuaca Basin (Humahuaca Basin) in the Eastern Cordillera of the southern Central Andes of NW Argentina (23°–24°S) records the evolution of a formerly contiguous foreland‐basin setting to an intermontane depositional environment during the late stages of Cenozoic Andean mountain building. This basin has been and continues to be subject to shortening and surface uplift, which has resulted in the establishment of an orographic barrier for easterly sourced moisture‐bearing winds along its eastern margin, followed by leeward aridification. We present new U–Pb zircon ages and palaeocurrent reconstructions suggesting that from at least 6 Ma until 4.2 Ma, the Humahuaca Basin was an integral part of a largely contiguous depositional system that became progressively decoupled from the foreland as deformation migrated eastward. The Humahuaca Basin experienced multiple cycles of severed hydrological conditions and subsequent re‐captured drainage, fluvial connectivity with the foreland and sediment evacuation. Depositional and structural relationships among faults, regional unconformities and deformed landforms reveal a general pattern of intrabasin deformation that appears to be associated with different cycles of alluviation and basin excavation in which deformation is focused on basin‐internal structures during or subsequent to phases of large‐scale sediment removal.  相似文献   

7.
The details of how narrow, orogen‐parallel ocean basins are filled with sediment by large axial submarine channels is important to understand because these depositional systems commonly form in through‐like basins in various tectonic settings. The Magallanes foreland basin is an excellent location to study an orogen‐parallel deep‐marine system. Conglomerate lenses of the Upper Cretaceous Cerro Toro Formation have been previously interpreted to represent the fill of a single submarine channel (4–8 km wide, >100 km long) that funneled coarse detritus southward along the basin axis. This interpretation was based on lithologic correlations. New U/Pb dating of zircons from volcanic ashes and sandstones, coupled with strontium isotope stratigraphy, refine the controls on depositional ages and provenance. Results demonstrate that north‐south oriented conglomerate lenses are contemporaneous within error limits (ca. 84–82 Ma) supporting that they represent parts of an axial channel belt. Channel deposits 20 km west of the axial location are 87–82 Ma in age. These channels are partly contemporaneous with the ones within the axial channel belt, making it likely that they represent feeders to the axial channel system. The northern Cerro Toro Formation spans a Turonian to Campanian interval (ca. 90–82 Ma) whereas the formation top, 70 km to the south, is as young as ca. 76 Ma. Kolmogorov–Smirnoff statistical analysis on detrital zircon age distributions shows that the northern uppermost Cerro Toro Formation yields a statistically different age distribution than other samples from the same formation but shows no difference relative to the overlying Tres Pasos Formation. These results suggest the partly coeval deposition of both formations. Integration of previously acquired geochronologic and stratigraphic data with new data show a pronounced southward younging pattern in all four marine formations in the Magallanes Basin. Highly diachronous infilling may be an important depositional pattern for narrow, orogen‐parallel ocean basins.  相似文献   

8.
The stratigraphic, subsidence and structural history of Orphan Basin, offshore the island of Newfoundland, Canada, is described from well data and tied to a regional seismic grid. This large (400 by 400 km) rifted basin is part of the non‐volcanic rifted margin in the northwest Atlantic Ocean, which had a long and complex rift history spanning Middle Jurassic to Aptian time. The basin is underlain by variably thinned continental crust, locally <10‐km thick. Our work highlights the complex structure, with major upper crustal faults terminating in the mid‐crust, while lower crustal reflectivity suggests ductile flow, perhaps accommodating depth‐dependent extension. We describe three major stratigraphic horizons connected to breakup and the early post‐rift. An Aptian–Albian unconformity appears to mark the end of crustal rifting in the basin, and a second, more subdued Santonian unconformity was also noted atop basement highs and along the proximal margins of the basin. Only minor thermal subsidence occurred between development of these two horizons. The main phase of post‐rift subsidence was delayed until post‐Santonian time, with rapid subsidence culminating in the development of a major flooding surface in base Tertiary time. Conventional models of rifting events predict significant basin thermal subsidence immediately following continental lithospheric breakup. In the Orphan Basin, however, this subsidence was delayed for about 25–30 Myr and requires more thinning of the mantle lithosphere than the crust. Models of the subsidence history suggest that extreme thinning of the lithospheric mantle continued well into the post‐rift period. This is consistent with edge‐driven, small‐scale convective flow in the mantle, which may thin the lithosphere from below. A hot spot may also have been present below the region in Aptian–Albian time.  相似文献   

9.
This study constrains the sediment provenance for the Late Cretaceous–Eocene strata of the Ager Basin, Spain, and reconstructs the interplay between foreland basin subsidence and sediment routing within the south-central Pyrenean foreland basin during the early phases of crustal shortening using detrital zircon (DZ) U-Pb-He double dating. Here we present and interpret 837 new DZ U-Pb ages, 113 of which are new DZ (U-Th)/He double-dated zircons. U-Pb-He double dating results allow for a clear differentiation between different foreland and hinterland sources of Variscan zircons (280–350 Ma) by leveraging the contrasting thermal histories of the Ebro Massif and Pyrenean orogen, recorded by the zircon (U-Th)/He (ZHe) ages, despite their indistinguishable U-Pb age signatures. Cretaceous–Paleocene sedimentary rocks, dominated by Variscan DZ U-Pb age components with Permian–Triassic (200–300 Ma) ZHe cooling ages, were sourced from the Ebro Massif south of the Ager Basin. A provenance shift occurred at the base of the Early Eocene Baronia Formation (ca. 53 Ma) to an eastern Pyrenean source (north-east of the Ager Basin) as evidenced by an abrupt change in paleocurrents, a change in DZ U-Pb signatures to age distributions dominated by Cambro-Silurian (420–520 Ma), Cadomian (520–700 Ma), and Proterozoic–Archean (>700 Ma) age components, and the prominent emergence of Cretaceous–Paleogene (<90 Ma) ZHe cooling ages. The Eocene Corçà Formation (ca. 50 Ma), characterized by the arrival of fully reset ZHe ages with very short lag times, signals the accumulation of sediment derived from the rapidly exhuming Pyrenean thrust sheets. While ZHe ages from the Corçà Formation are fully reset, zircon fission track (ZFT) ages preserve older inherited cooling ages, bracketing the exhumation level within the thrust sheets to ca. 6–8 km in the Early Eocene. These DZ ZHe ages yield exhumation rate estimates of ca. 0.03 km/Myr during the Late Cretaceous–Paleocene for the Ebro Massif and ca. 0.2–0.4 km/Myr during the Eocene for the eastern Pyrenees.  相似文献   

10.
The continuous Cenozoic strata in the Xining Basin record the growth and evolution of the northeastern Qinghai–Tibetan Plateau. Here, the mechanisms and evolution of the Xining Basin during the Cenozoic were investigated by studying the sedimentary facies of 22 Cenozoic sections across the basin and detrital zircon U‐Pb ages of three Cenozoic sections located in the eastern, central and western basin, respectively. In the Eocene (ca. 50–44 Ma), the India‐Eurasia Collision affected the northeastern Qinghai–Tibetan Plateau. The Central Qilian Block rotated clockwise by ca. 24° to form the Xining Basin. The Triassic flysch sediments surrounding the basin were the primary sources of sediment. Between ca. 44–40 Ma, the basin enlarged and deepened, and sedimentation was dominated by saline lake sediments. Between ca. 40–25.5 Ma, the Xining Basin began to shrink and dry, resulting in the deposition of saline pan and saline mudflat sediments in the basin. After ca. 20 Ma, the Laji Shan to the south of the Xining Basin was uplifted due to the northward compression of the Guide Basin to the south. Clasts that eroded from this range dominated the sediments as the basin evolved from a lacustrine environment into a fluvial system. The Xining Basin was an extensional basin in the Early Cenozoic, but changed into a compressive one during the Late Cenozoic, it was not a foreland basin either to the Kunlun Shan or to the western Qinling Shan in the whole Cenozoic. The formation and deformation of the Xining Basin are the direct responses of the India‐Eurasia Collision and the growth of the Qinghai‐Tibetan Plateau.  相似文献   

11.
The subsidence and exhumation histories of the Qiangtang Basin and their contributions to the early evolution of the Tibetan plateau are vigorously debated. This paper reconstructs the subsidence history of the Mesozoic Qiangtang Basin with 11 selected composite stratigraphic sections and constrains the first stage of cooling using apatite fission track data. Facies analysis, biostratigraphy, palaeo‐environment interpretation and palaeo‐water depth estimation are integrated to create 11 composite sections through the basin. Backstripped subsidence calculations combined with previous work on sediment provenance and timing of deformation show that the evolution of the Mesozoic Qiangtang Basin can be divided into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a retro‐foreland basin. In contrast, the South Qiangtang was a collisional pro‐foreland basin. During Middle Jurassic‐Early Cretaceous times, the North Qiangtang is interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the South Qiangtang was controlled by subduction of Meso‐Tethyan Ocean lithosphere and associated dynamic topography combined with loading from the Central Uplift. Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early to Late Cretaceous (120.9–84.1 Ma) and Paleocene–Eocene (65.4–40.1 Ma). Thermal history modelling results record Early Cretaceous rapid cooling; the termination of subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the accumulation of crustal thickening in central Tibet probably initiated during Late Jurassic–Early Cretaceous times (150–130 Ma), involving underthrusting of both the Lhasa and Songpan–Ganze terranes beneath the Qiangtang terrane or the collision of Amdo terrane.  相似文献   

12.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   

13.
The Middle to Upper Ordovician foreland succession of the Ottawa Embayment in central Canada is divided into nine transgressive‐regressive sequences that defines net deepening of a platform succession over ~15 m.y. from peritidal to outer ramp settings, then a return to peritidal conditions over ~3 m.y. related to basin filling by orogen‐derived siliciclastics. With a backdrop of net eustatic rise through the Middle to Late Ordovician, there are several different expressions of structural influence on sequence development in the embayment. During the Middle Ordovician (Darriwilian), foreland‐basin initiation was marked by regional onlap with abundant synsedimentary deformation across a faulted trailing‐margin platform interior; subsequent craton‐interior uplift resulted in voluminous influx of siliciclastics contemporary with local structurally influenced local channelization; then, a formation of a platform‐interior shale basin defines continued intrabasin tectonism. During the Late Ordovician (Sandbian, early Katian), structural influence was superimposed on sea‐level rise as indicated by renewed local development of a platform‐interior shale basin; differential subsidence and thickness variation of platform carbonate successions; abrupt deepening across shallow‐water shoal facies; and, micrograben development coincident with foreland‐platform drowning. These stratigraphic patterns are far‐field expressions of distal orogen development amplified in the platform interior through basement reactivation along an inherited buried Precambrian fault system. Comparison of Upper Ordovician (Sandbian‐lower Katian) sequence stratigraphy in the Ottawa Embayment with eustatic frameworks defined for the Appalachian Basin reveals greater regional variation associated with Sandbian sequences compared to regional commonality in base level through the early Katian.  相似文献   

14.
《Basin Research》2018,30(Z1):269-288
A number of major controversies exist in the South China Sea, including the timing and pattern of seafloor spreading, the anomalous alternating strike‐slip movement on the Red River Fault, the existence of anomalous post‐rift subsidence and how major submarine canyons have developed. The Qiongdongnan Basin is located in the intersection of the northern South China Sea margin and the strike‐slip Red River fault zone. Analysing the subsidence of the Qiongdongnan Basin is critical in understanding these controversies. The basin‐wide unloaded tectonic subsidence is computed through 1D backstripping constrained by the reconstruction of palaeo‐water depths and the interpretation of dense seismic profiles and wells. Results show that discrete subsidence sags began to form in the central depression during the middle and late Eocene (45–31.5 Ma). Subsequently in the Oligocene (31.5–23 Ma), more faults with intense activity formed, leading to rapid extension with high subsidence (40–90 m Myr−1). This extension is also inferred to be affected by the sinistral movement of the offshore Red River Fault as new subsidence sags progressively formed adjacent to this structure. Evidence from faults, subsidence, magmatic intrusions and strata erosion suggests that the breakup unconformity formed at ca. 23 Ma, coeval with the initial seafloor spreading in the southwestern subbasin of the South China Sea, demonstrating that the breakup unconformity in the Qiongdongnan Basin is younger than that observed in the Pearl River Mouth Basin (ca. 32–28 Ma) and Taiwan region (ca. 39–33 Ma), which implies that the seafloor spreading in the South China Sea began diachronously from east to west. The post‐rift subsidence was extremely slow during the early and middle Miocene (16 m Myr−1, 23–11.6 Ma), probably caused by the transient dynamic support induced by mantle convection during seafloor spreading. Subsequently, rapid post‐rift subsidence occurred during the late Miocene (144 m Myr−1, 11.6–5.5 Ma) possibly as the dynamic support disappeared. The post‐rift subsidence slowed again from the Pliocene to the Quaternary (24 m Myr−1, 5.5–0 Ma), but a subsidence centre formed in the west with the maximum subsidence of ca. 450 m, which coincided with a basin with the sediment thickness exceeding 5500 m and is inferred to be caused by sediment‐induced ductile crust flow. Anomalous post‐rift subsidence in the Qiongdongnan Basin increased from ca. 300 m in the northwest to ca. 1200 m in the southeast, and the post‐rift vertical movement of the basement was probably the most important factor to facilitate the development of the central submarine canyon.  相似文献   

15.
The effectiveness of detrital zircon thermochronology as a means of linking hinterland evolution and continental basin sedimentation studies is assessed by using Mesozoic continental sediments from the poorly understood Khorat Plateau Basin in eastern Thailand. New uranium lead (U‐Pb) and fission‐track (FT) zircon data from the Phu Kradung Formation identify age modes at 141 ± 17 and 210 ± 24 Ma (FT) and 2456 ± 4, 2001 ± 4, 251 ± 3, and 168 ± 2 Ma (U‐Pb), which are closely similar to data from the overlying formations. The FT data record post‐metamorphic cooling, whereas the U‐Pb data record zircon growth events in the hinterland. Comparison is made between detrital zircon U‐Pb data from ancient and modern sources across Southeast Asia. The inherent stability of the zircon U‐Pb system means that 250 Myr of post‐orogenic sedimentary recycling fails to change the regional zircon U‐Pb age signature and this precludes use of the U‐Pb approach alone for providing unique provenance information. Although the U‐Pb zircon results are consistent with (but not uniquely diagnostic of) the Qinling Orogenic Belt as the original source terrane for the Khorat Plateau Basin sediments, the zircon FT cooling data are more useful as they provide the key temporal link between basin and hinterland. The youngest zircon FT modes from the Khorat sequence range between 114 ± 6 (Phra Wihan Formation) and 141 ± 17 Ma (Phu Kradung Formation) that correspond to a Late Jurassic/Early Cretaceous reactivation event, which affected the Qinling Belt and adjacent foreland basins. The mechanism for regional Early Cretaceous erosion is identified as Cretaceous collision between the Lhasa Block and Eurasia. Thus, the Khorat Plateau Basin sediments might have originated from a reactivation event that affected a mature hinterland and not an active orogenic belt as postulated in previous models.  相似文献   

16.
The propagation of the deformation front in foreland systems is typically accompanied by the incorporation of parts of the basin into wedge‐top piggy‐back basins, this process is likely producing considerable changes to sedimentation rates (SR). Here we investigate the spatial‐temporal evolution of SR for the Tremp–Jaca Basin in the Southern Pyrenees during its evolution from a wedge‐top, foreredeep, forebulge configuration to a wedge‐top stage. SR were controlled by a series of tectonic structures that influenced subsidence distribution and modified the sediment dispersal patterns. We compare the decompacted SR calculated from 12 magnetostratigraphic sections located throughout the Tremp–Jaca Basin represent the full range of depositional environment and times. While the derived long‐term SR range between 9.0 and 84.5 cm/kyr, compiled data at the scale of magnetozones (0.1–2.5 Myr) yield SR that range from 3.0 to 170 cm/kyr. From this analysis, three main types of depocenter are recognized: a regional depocenter in the foredeep depozone; depocenters related to both regional subsidence and salt tectonics in the wedge‐top depozone; and a depocenter related to clastic shelf building showing transgressive and regressive trends with graded and non‐graded episodes. From the evolution of SR we distinguish two stages. The Lutetian Stage (from 49.1–41.2 Ma) portrays a compartmentalized basin characterized by variable SR in dominantly underfilled accommodation areas. The markedly different advance of the deformation front between the Central and Western Pyrenees resulted in a complex distribution of the foreland depozones during this stage. The Bartonian–Priabonian Stage (41.2–36.9 Ma) represents the integration of the whole basin into the wedge‐top, showing a generalized reduction of SR in a mostly overfilled relatively uniform basin. The stacking of basement units in the hinterland during the whole period produced unusually high SR in the wedge‐top depozone.  相似文献   

17.
Early Mesozoic Basins in the Yanshan Fold–Thrust Belt (YFTB), located along the northern margin of the North China Craton (NCC), record significant intraplate deformation of unknown age. In this article, we present evidence for the rapid exhumation of high‐grade basement rocks along the northern margin of the NCC in the Early Mesozoic. U–Pb geochronology of detrital zircons constrains the maximum depositional ages of syntectonic sedimentary units that formed during the unroofing of basement rocks and plutons in the Xiabancheng Basin. In the Early Mesozoic, the Xiabancheng Basin recorded a dramatic transformation in depositional environments, related to a significant change in the regional tectonic setting. In this study, the tectonic evolution of the YFTB is established from paleocurrent data and U–Pb zircon ages of sandstone and granitic gravels of the Xingshikou Formation, Xiabancheng Basin. The paleocurrent direction of meandering fluvial facies in the Triassic Liujiagou and Ermaying Formations are from east to west. In contrast, the overlying Xingshikou Formation consists of alluvial fan facies with paleocurrent directions from north‐northwest to south‐southeast. The lower and middle segments of the Xingshikou Formation record rapid exhumation of basement rocks along the northern margin of the NCC. U‐Pb ages of detrital zircons within the Xingshikou Formation are characterized by three major U–Pb age groups: 2.2–2.5 Ga, 1.7–1.8 Ga and 193–356 Ma. From 193 Ma to 356 Ma, a subsidiary peak occurs at 198 ± 5 Ma, constraining the sedimentation age of the Xingshikou Formation to the Early Jurassic. Zircon from the Wangtufang pluton in the northern portion of the Xiabancheng Basin yields U–Pb ages of 191 ± 1 Ma and 207 ± 1 Ma. Within error, these crystallization ages are identical to detrital zircon ages of 206 ± 1 Ma and 206 ± 2 Ma obtained for granitic gravel clasts in the Xingshikou Formation. Thus, the Wangtufang pluton and surrounding basement rocks must have experienced rapid uplift and exhumation during the Early Jurassic. The onset of exhumation along the northern margin of the NCC occurred at ca. 198–180 Ma.  相似文献   

18.
An integrated provenance analysis of the Upper Cretaceous Magallanes retroarc foreland basin of southern Chile (50°30′–52°S) provides new constraints on source area evolution, regional patterns of sediment dispersal and depositional age. Over 450 new single‐grain detrital‐zircon U‐Pb ages, which are integrated with sandstone petrographic and mudstone geochemical data, provide a comprehensive detrital record of the northern Magallanes foreland basin‐filling succession (>4000‐m‐thick). Prominent peaks in detrital‐zircon age distribution among the Punta Barrosa, Cerro Toro, Tres Pasos and Dorotea Formations indicate that the incorporation and exhumation of Upper Jurassic igneous rocks (ca. 147–155 Ma) into the Andean fold‐thrust belt was established in the Santonian (ca. 85 Ma) and was a significant source of detritus to the basin by the Maastrichtian (ca. 70 Ma). Sandstone compositional trends indicate an increase in volcanic and volcaniclastic grains upward through the basin fill corroborating the interpretation of an unroofing sequence. Detrital‐zircon ages indicate that the Magallanes foredeep received young arc‐derived detritus throughout its ca. 20 m.y. filling history, constraining the timing of basin‐filling phases previously based only on biostratigraphy. Additionally, spatial patterns of detrital‐zircon ages in the Tres Pasos and Dorotea Formations support interpretations that they are genetically linked depositional systems, thus demonstrating the utility of provenance indicators for evaluating stratigraphic relationships of diachronous lithostratigraphic units. This integrated provenance dataset highlights how the sedimentary fill of the Magallanes basin is unique among other retroarc foreland basins and from the well‐studied Andean foreland basins farther north, which is attributed to nature of the predecessor rift and backarc basin.  相似文献   

19.
Fine‐grained Palaeogene–early Neogene strata of the South Caspian basin, specifically the Oligocene–Lower Miocene Maikop Series, are responsible for the bulk of hydrocarbon generation in the region. Despite the magnitude of oil and gas currently attributed to the source interval offshore, geochemical evaluation of 376 outcrop samples from the northern edge of the Kura basin (onshore eastern Azerbaijan) indicates that depositional conditions in these proximal strata along the basin margins were dominantly oxic to mildly suboxic/anoxic throughout three major depositional stages: the Palaeocene–Eocene, Oligocene–early Middle Miocene and late Middle–Late Miocene. Palaeocene–Eocene samples have low average total organic carbon (TOC) values (0.3%), with higher total inorganic carbon (TIC) values (average=2.6%), extremely low sulphur content (0.2%) and relatively high detrital input as indicated by Fe/Al and Ti/Al ratios. C–S–Fe associations, along with relatively lower concentrations of redox‐sensitive trace elements (e.g. V, Ni, Mo, U) indicate dominantly oxic environments of deposition during much of the Palaeocene–Eocene. A pronounced geochemical shift occurred near the Eocene–Oligocene boundary, and continued through the Early Miocene. Specifically, this interval is characterized by a distinct increase in TOC (ranging from 0.1 to 6.3% with an average of 1.5%), C–S–Fe associations that reveal an abrupt relative increase of carbon and sulphur with respect to iron‐dominated Palaeocene–Eocene samples, and higher concentrations of redox‐sensitive trace metals. These changes suggest that a shift away from unrestricted marine conditions and towards more variable salinity conditions occurred coincident with the initial collision of the Arabian plate and partial closure of the Paratethys ocean. Despite periodic basin restriction, the majority of Upper Eocene–Lower Miocene strata in the northern Kura basin record oxic to slightly dysoxic conditions.  相似文献   

20.
Sedimentation rates over the last 100 years within two lagoons on the southeast coast of Australia, Lake Illawarra and St Georges Basin, have been quantified to determine the effects of catchment land use change and native vegetation clearance on infill rates, and spatial variations in the rate at which the estuaries have filled. Both catchments have similar lake and catchment area but have experience different degrees of modification due to land clearing for agriculture practices, urbanisation and industrialisation. Results indicate that in the heavily modified catchment of Lake Illawarra sedimentation rates close to fluvial deltas can be in excess of 16 mm/year, and between 2 and 4 mm/year in the adjacent central basin. This is approximately an order of magnitude greater than the pre-European rates. In contrast, at St Georges Basin, where the catchment has experienced much less modification, sedimentation rates in the central basin appear to have remained close to those prior to European settlement. However, sedimentation rates in the urbanized margin of St Georges Basin are relatively high (up to 4.4 mm/year). This rapid modern sedimentation in the margin of the estuarine embayments has been detected in several other estuaries in the region. However the degree of sedimentation within the bay-head deltas, and more significantly in the central basin appears proportional to the degree clearance of native vegetation (forest) in the catchment, urban expansion and development of heavy industry in the respective catchment areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号