首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
本文采用流延法制备了添加不同比例的GO-TiO_2以及g-C_3N_4的PVDF复合膜,并将改性后的PVDF膜应用于油田废水处理。通过对复合膜的表征以及对膜处理后的出水进行水质分析,从不同膜对油田废水的COD、SS以及含油率的去除率等方面测试膜的性能。结果表明:添加量GO-TiO_2后的PVDF膜综合性能更优异且处理含油废水的效果最佳。  相似文献   

2.
采用高温煅烧法制备了类石墨相氮化碳(g-C_3N_4),将其与TiO_2(P25)复合得到g-C_3N_4/TiO_2复合光催化剂。采用XRD、FT-IR、UV-Vis/DRS、SEM等方法对制备的复合光催化剂进行了表征,并以亚甲基蓝(MB)为模拟污染物,考察了g-C_3N_4/TiO_2的可见光催化活性。结果表明:通过复合,g-C_3N_4/TiO_2的吸收波长向可见光区域移动;当gC_3N_4与TiO_2复合质量比为4∶1时,所得到的g-C_3N_4/TiO_2(4∶1)复合光催化剂的催化活性最佳,其对MB的可见光催化活性是g-C_3N_4的2.74倍。  相似文献   

3.
以钛酸四丁酯为钛的前驱体,三聚氰胺为氮源,分别以溶胶凝胶及物理混合法制备g-C_3N_4/TiO_2复合纳米光催化材料,采用X射线衍射、傅里叶红外光谱、紫外-可见漫反射对催化材料的物相结构、官能团、光吸收性能等进行表征。结果表明,g-C_3N_4与TiO_2物理混合比例为0.1时制得的g-C_3N_4/TiO_2活性较高,经8 h光照,可使次甲基蓝脱色率达到62.62%。  相似文献   

4.
以氧化石墨(GO)、石墨相氮化碳(g-C_3N_4)和P25TiO_2为原料,采用碱性水热法制备了不同g-C_3N_4掺杂量的TiO_2纳米管/石墨烯(TiO_2NT/g-C_3 N_4/RGO)三元复合材料。利用XRD、FT-IR、TEM、XPS等表征手段对其物相结构、微观形貌进行分析,并通过微波辅助加热的方式将其应用于催化果糖脱水制备5-羟甲基糠醛(5-HMF)。结果表明,当g-C_3N_4掺杂量为2%时,利用TiO_2纳米管、g-C_3N_4和石墨烯的协同作用,复合材料催化果糖降解性能最好此时,5-HMF的产率达67.2%。  相似文献   

5.
《应用化工》2022,(6):1554-1558
由于g-C_3N_4存在着表面积小、光生载流子复合严重等问题,限制了光催化材料的光催化活性,故以g-C_3N_4/TiO_2光催化复合材料为实验对象,提出g-C_3N_4/TiO_2光催化复合材料光催化活性提升路径研究。选取适当的实验试剂与仪器,并对试剂进行一定的处理,制备g-C_3N_4纳米片、TiO_2纳米片与g-C_3N_4/TiO_2光催化复合材料,设置水分解实验步骤。在不同三聚氰胺/TiO_2质量比、高温煅烧温度与高温煅烧时间条件下,制备g-C_3N_4/TiO_2光催化复合材料,并进行水分解实验。结果表明,当制备条件为三聚氰胺/TiO_2质量比为4∶1,高温煅烧温度为550℃,高温煅烧时间为5 h时,g-C_3N_4/TiO_2光催化复合材料水分解氢气量最大,即光催化活性最佳。  相似文献   

6.
利用溶胶凝胶法和焙烧处理的方式配置类石墨相氮化碳(g-C_3N_4),使其和TiO_2复合得出gC_3N_4/TiO_2复合光催化材料。对配置的符合光催化剂实现测试,将亚甲基蓝MB作为模拟污染物,分析gC_3N_4/TiO_2的可见光催化活性。结果表示,g-C_3N_4/TiO_2吸收波长朝着可见光区域移动。在g-C_3N_4和TiO_2复合质量比为4∶1的时候,得到的g-C_3N_4/TiO_2复合光催化剂具有良好的催化活性,对于MB可见光催化活性为g-C_3N_4的2.74倍。  相似文献   

7.
设计机械强度高、电化学性能好和绝缘性优良的锂电池隔膜具有重要意义。采用热缩聚法将类石墨相氮化碳(g-C_3N_4)与聚偏氟乙烯(PVDF)混纺制备了PVDF/g-C_3N_4复合纤维隔膜,通过扫描电子显微镜、万能拉伸试验仪、热重分析仪、电化学工作站、电池测试系统对PVDF/g-C_3N_4复合纤维隔膜的微观形貌和性能进行测试与表征。考察了g-C_3N_4纳米片添加量对复合纤维隔膜的形貌、热稳定性、力学性能以及电化学性能等的影响。研究表明,当g-C_3N_4纳米片添加量为PVDF质量的5%时,纤维直径最小,力学性能最好且孔隙率最大为74.08%;提高其含量至15%时,吸液率达到最大为443.48%;当g-C_3N_4纳米片添加量为PVDF质量的10%时,复合纤维隔膜的离子电导率及电化学稳定窗口分别达到了1.15×10~(–3) S/cm和5.1 V。与商用隔膜相比,PVDF/g-C_3N_4复合纤维隔膜表现出良好的电化学性能。  相似文献   

8.
以三聚氰胺为氮源,钛酸丁酯为钛源,采用溶胶-凝胶法制备g-C_3N_4/TiO_2复合光催化材料,通过XRD、FESEM、UV-Vis、激光粒度分析仪对样品进行表征,以光催化降解亚甲基蓝(MB)为探针反应,研究了复合比和焙烧温度对样品可见光催化性能的影响。结果表明,g-C_3N_4/TiO_2复合光催化剂为锐钛矿相和金红石相组成的混合晶型,TiO_2颗粒呈近球形分布于片层结构的石墨相C3N4表面,复合材料平均粒径2.17μm,粒度分布均匀,复合后样品的光吸收增强。当g-C_3N_4与TiO_2复合比1.0,焙烧温度450℃时,在32 W普通日光灯下g-C_3N_4/TiO_2对MB的降解率达到93.3%。  相似文献   

9.
以具有优异光催化性能的Ti O_2/g-C_3N_4复合材料为光催化活性组分、硅藻泥为涂料主要成分,将两者物理复合形成具有高效光催化性能的硅藻泥涂料。利用XRD、SEM、PL、BET、FT-IR等表征手段对复合前后的样品进行分析,根据涂料附着力及耐水性等各项国标对涂料的性能进行测试,并以NO为目标物对其光催化活性进行评价。结果表明,相比Ti O_2/g-C_3N_4和纯硅藻泥,Ti O_2/g-C_3N_4硅藻泥复合光催化剂具有更高的光催化活性,对NO的净化效率提高明显。其中硅藻泥与光催化材料TiO_2/g-C_3N_4质量比为1∶1、混合搅拌时间为2 h、烘干温度为60℃时,光催化硅藻泥涂料对NO的净化效率最高可达71%。  相似文献   

10.
《应用化工》2022,(11):2525-2530
概述了g-C_3N_4/TiO_2复合材料的制备方法,给出了g-C_3N_4的晶体结构和分子结构,介绍了g-C_3N_4/TiO_2为基的三种类型催化剂的可见光催化机理,总结了g-C_3N_4/TiO_2复合光催化材料的应用。  相似文献   

11.
概述了g-C_3N_4/TiO_2复合材料的制备方法,给出了g-C_3N_4的晶体结构和分子结构,介绍了g-C_3N_4/TiO_2为基的三种类型催化剂的可见光催化机理,总结了g-C_3N_4/TiO_2复合光催化材料的应用。  相似文献   

12.
《云南化工》2017,(8):31-33
以g-C_3N_4/TiO_2复合材料、硅藻土、六偏磷酸钠、硅丙乳液为原料,制备了具有可见光催化性能的涂料。当催化剂(g)、硅藻土(g)、硅丙乳液(ml)的比例为7:3:10,分散剂六偏磷酸钠含量为催化剂和硅藻土含量的0.56%,30min内对NO_x气体降解率达到50.72%。用XRD、FTIR、UV-vis、DSC差热分析对涂膜进行了表征,结果表明,制备的光催化涂料的活性成分为g-C_3N_4和TiO_2,表现出较强的紫外、可见光吸收能力。  相似文献   

13.
电化学法合成氨是一种有希望替代传统Haber-Bosch法的新方法,而开发一种能够高效活化N2分子的催化剂成为电化学法合成氨的关键。采用一步煅烧二氰二胺的方法制备了石墨型氮化碳(g-C_3N_4),并将Pt纳米颗粒沉积在g-C_3N_4上制备了Pt/g-C_3N_4。采用XRD、SEM、TEM以及XPS表征和分析了所得催化剂的晶体结构,表面微观形貌和表面元素组成。分别采用H+型Nafion膜和H+/NH+4型Nafion膜作电解质,研究了Pt/g-C_3N_4和g-C_3N_4的催化性能以及Nafion膜中NH+4的作用。结果表明,Pt/g-C_3N_4和g-C_3N_4分别作阴极催化剂时均成功合成出NH3,而Pt/g-C_3N_4的性能优于g-C_3N_4。另外,膜中引入NH+4能够促进N2的电化学还原。  相似文献   

14.
田少鹏  王鹏  任花萍  朱敏  苗宗成 《精细化工》2019,36(12):2431-2437,2446
以g-C_3N_4为基底,通过掺杂Fe元素,复合MoS_2的方法制备了具有多孔异质结结构的MoS_2/Fe-g-C_3N_4半导体材料,并测量了其光解水产氢性能,发现MoS_2含量为3%(以g-C_3N_4的质量为基准,下同)时,MoS_2/Fe-g-C_3N_4的光催化性能优异,其产氢速率达到48.2μmol/h,为g-C_3N_4的5.48倍。利用XRD、FTIR、SEM、TEM、XPS表征了催化剂的物化性质;利用PL、UV-Vis等方法表征了催化剂的光学性质。结果发现,Fe元素的掺杂使g-C_3N_4结晶度降低,并呈现一种交叉孔道结构,极大增加了催化剂的比表面积。同时,MoS_2可以与g-C_3N_4形成异质结结构,提高了MoS_2/Fe-g-C_3N_4的可见光吸收率以及光生电子-空穴对的分离效率,从而有效提高了MoS_2/Fe-g-C_3N_4光解水产氢的能力。  相似文献   

15.
采用阳极氧化法制备出TiO_2纳米管阵列,再通过浸渍法实现石墨相C_3N_4(g-C_3N_4)对TiO_2纳米管阵列的复合。研究表明,g-C_3N_4复合能显著提高TiO_2纳米管阵列的光电化学性能,且经三次g-C_3N_4浸渍的TiO_2纳米管阵列性能最佳。  相似文献   

16.
研究了不同比例的混合添加剂PEG600-LiCl、丙酮-LiCl、丙三醇-LiCl和PVP-LiCl对TiO2/PVDF平板超滤膜性能和结构的影响,并利用扫描电子显微镜( SEM)和接触角测量仪表征了复合膜的结构.结果表明,PEG600-LiCl、丙酮-LiCl、丙三醇-LiCl和PVP-LiCl 4种混合添加剂均可以改善膜性能,其中PEG600-LiCl、丙三醇-LiCl、PVP-LiCl3种混合添加剂加到铸膜液中,明显改善了PVDF膜表面的亲水性,可以将膜表面接触角降低至55°.当PVP与LiCl的质量比为1∶2时,膜的性能达到最优,孔隙率为82.5%,平均孔径为0.1 μm,水通量为100.5 L·m-2·h-1,截留率为95.4%.  相似文献   

17.
以马铃薯淀粉为基材,壳聚糖和纳米TiO_2为增强相,研究壳聚糖和纳米TiO_2对马铃薯淀粉成膜性能的影响。通过溶液共混法将壳聚糖的乙酸溶液与马铃薯淀粉糊化液,按照4∶6的比例均匀混合,加入纳米Ti O2流延成膜,研究壳聚糖和纳米TiO_2对复合膜的阻氧性及透湿性的影响;用XRD、SEM表征复合膜的结构与形态。研究结果表明,马铃薯淀粉与壳聚糖、纳米TiO2组分成膜时具有良好的相容性;壳聚糖和纳米TiO_2能有效改善复合膜的水蒸气透过性和阻氧性;纳米TiO_2/壳聚糖/马铃薯淀粉复合膜较马铃薯淀粉单膜、马铃薯淀粉/壳聚糖复合膜、马铃薯淀粉/纳米TiO_2复合膜的阻氧性提高了43. 38%、7. 56%、19. 14%;水蒸气透过率降低了32. 41%、39. 18%、30. 89%。壳聚糖和纳米TiO_2添加到马铃薯淀粉液中共混制膜,能够增强复合膜的性能。  相似文献   

18.
通过水热法在凹凸棒石(ATP)棒晶表面原位生长石墨相氮化碳(g-C_3N_4)膜层合成了ATP/g-C_3N_4复合材料,然后以ATP/g-C_3N_4为载体,在其表面均匀负载纳米钴酸镧(LaCoO_3)粒子,制备了Z-型异质结构的ATP/g-C_3N_4/LaCoO_3光催化材料。利用X射线粉末衍射、透射电镜、紫外-可见吸收光谱、荧光发射光谱、N_2吸附-脱附和光电化学等技术对样品进行表征。在可见光照射下,考察了LaCoO_3不同负载量下ATP/g-C_3N_4/LaCoO_3对模拟汽油中的苯并噻吩(DBT)的氧化脱除能力。结果表明:与ATP/g-C_3N_4和LaCoO_3相比,ATP/g-C_3N_4/LaCoO_3大幅提高了可见光响应、吸收能力和光生电子-空穴对的分离效率。当光照时间为150 min时,50%-ATP/g-C_3N_4/LaCoO_3对模拟汽油中的DBT脱除率可达85.3%。  相似文献   

19.
采用非溶剂致相分离法制备TiO_2/PVDF改性中空纤维超滤膜,利用傅里叶红外吸收光谱技术、扫描电镜表征了膜的化学组成及微观形态,考察了添加纳米TiO_2粒子对PVDF膜的纯水通量、截留率、机械强度、孔隙率及亲水性等性能的影响。结果表明,与未添加纳米TiO_2粒子的膜相比,其微观结构、亲水性及膜性能均有显著提高;纳米TiO_2粒子的添加有效改善了膜的亲水性及机械强度,但过量添加会造成团聚,从而影响膜的分离性能。纳米TiO_2粒子的质量分数为1%时制得的膜综合性能为优,纯水通量达到了524.3 L/(m2·h),BSA截留率达到了96.3%,拉伸强度为2.69 MPa,断裂伸长率为182%,表面纯水接触角为65.4°,孔隙率为77.9%。  相似文献   

20.
以片状g-C_3N_4、六水三氯化铁、柠檬酸三钠和尿素为原料,聚丙烯酰胺为稳定剂,采用水热法制备Fe_3O_4/g-C_3N_4复合材料并作为过硫酸钠(PS)降解罗丹明B(RhB)的活化剂。通过XRD、SEM、EDS、FT-IR对样品结构、形貌与组成进行表征。考察Fe_3O_4与g-C_3N_4的质量比、活化剂质量、PS质量、溶液pH等对Fe_3O_4/g-C_3N_4活化PS降解RhB效果的影响。结果表明,与g-C_3N_4复合有效提高了Fe_3O_4的分散性和活化性能;在Fe_3O_4与g-C_3N_4质量比为3∶4、Fe_3O_4/g-C_3N_4质量为50 mg、PS质量为20 mg、RhB溶液pH为2.1时,反应120 min RhB的降解率达到100%。Fe_3O_4/g-C_3N_4可用磁铁进行分离回收,循环使用5次,活化PS去除RhB降解率仍达95.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号