首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
青龙矿构造发育规律及其演化对瓦斯的控制   总被引:1,自引:0,他引:1  
为了预防和防止青龙矿瓦斯事故的发生,在系统整理、分析青龙矿地质资料和瓦斯资料的基础上,结合区域构造演化分析,探讨了青龙矿构造发育规律及其演化特征,阐述了矿井瓦斯赋存的构造控制作用,并对瓦斯突出危险区进行了预测。结果表明:青龙矿构造定型于燕山期,构造复杂程度属中等-复杂,逆断层发育,瓦斯含量较高,各煤层瓦斯含量几乎都大于10 m3/t;结合煤层埋深和构造煤分布规律分析认为井田西南部构造复杂区为瓦斯突出危险区,东部(浅部)为瓦斯突出威胁区。  相似文献   

2.
赵鹏涛  王启宇 《煤》2014,(7):8-10
为了获得南庄煤矿12号、15号煤层瓦斯地质规律及其突出危险区域,通过井下瓦斯含量直接测定法,运用地质构造控制理论分析了12号、15号煤层瓦斯赋存特征及其影响因素,得到了埋藏深度是影响12号、15号煤层瓦斯含量变化的主要因素,煤层围岩对瓦斯有保存作用,断层等因素对局部瓦斯含量变化有所影响,褶皱没有影响等结论。在此基础上对12号、15号煤层突出危险区进行划分,结果为该矿井12号、15号煤层埋藏深度分别大于160 m、470 m的区域均为突出危险区,这对防治瓦斯突出和保证矿井的安全生产具有重大意义。  相似文献   

3.
李新宇 《煤》2022,(3):101-102
文章采用钻孔瓦斯解吸法及直接测定方法,测定了五里堠煤业15号煤层瓦斯含量和压力,结果显示,五里堠煤业15号煤层瓦斯含量、压力均与煤层埋深呈线性相关,瓦斯含量和压力梯度分别为1.64 m3/(t·100 m)、0.21 MPa/100 m.基于此,综合采用4个突出危险性单项指标,分析确定五里堠煤业15号煤层目前开采范围无...  相似文献   

4.
通过对平煤五矿己四采区己_(15)煤的坚固系数,瓦斯放散初速度,煤层瓦斯压力和含量等瓦斯基础参数的实际测定,并结合五矿己四采区瓦斯地质特征和己_(15)煤层破坏情况,采用瓦斯参数结合瓦斯地质分析法与工程类比法对平煤五矿己四采区己_(15)煤层煤与瓦斯突出危险性进行区域预测,确定己四采区己_(15)煤层在原煤瓦斯含量达到5.4m~3/t,绝对瓦斯压力0.79MPa为突出危险区的下限指标,对应煤层底板标高-600m,在标高-600m以浅为无突出危险区,-600m以深为突出危险区。  相似文献   

5.
和顺城南矿区内15煤层瓦斯含量在3.69~7.81 m3/t之间,总体而言,西部瓦斯含量高,东部瓦斯含量较低,但存在个别异常区域.随煤层埋深、煤厚的增加,瓦斯含量增大;随挥发分的增加,瓦斯含量减小.利用估算法预测瓦斯相对涌出量为7.49 m3/t.绝对涌出量为35.63 m3/min.  相似文献   

6.
《煤炭技术》2017,(8):146-148
青龙煤矿煤层透气性低,回采工作面瓦斯经长时间预抽仍无法消除突出危险,造成工作面回采期间瓦斯涌出量增加,严重影响生产进度。青龙煤矿采取"穿层钻孔+顺层钻孔"立体抽采本煤层瓦斯、"高位钻孔+采空区埋管"抽采采空区瓦斯的综合治理模式,有效地治理了工作面瓦斯涌出,杜绝了工作面回采期间瓦斯超限现象,提高了工作面的生产效率。  相似文献   

7.
以实测的皇联煤业3煤层瓦斯基础数据为基础,分析了控制煤层瓦斯赋存的地质因素,得到了煤层的瓦斯赋存规律,为瓦斯防治工作提供重要依据。煤层埋深是影响3号煤层瓦斯赋存的主控因素。3煤层瓦斯含量增长梯度为0.0068m3/(t·m),瓦斯压力增长梯度为0.0004MPa/m,3号煤层最大瓦斯含量为5.97m3/t,最大瓦斯压力为0.194MPa。  相似文献   

8.
为准确掌握矿井煤层瓦斯含量分布,有效治理瓦斯灾害及开发利用瓦斯资源,对比分析了寺河煤矿、赵庄煤矿井田及邻近区域实施的92口煤层气井瓦斯含量,地勘时期测定的86组瓦斯含量和生产期间井下实测的原始瓦斯含量。结果表明:寺河煤矿煤层埋深在300~450 m时,煤层气含量约为井下实测瓦斯含量的1.28~1.37倍,地勘瓦斯含量约为井下瓦斯含量的1.01~1.10倍。赵庄煤矿煤层埋深在600~750 m时,煤层气含量约为井下实测瓦斯含量的1.05~1.41倍;煤层埋深在450~700 m时,地勘瓦斯含量约为井下实测瓦斯含量的1.01~1.35倍。基于此,得到多源瓦斯含量数据产生差异的主要原因为参数测试条件不同,采样方式不同、残存瓦斯含量测定方法及内容不同等。  相似文献   

9.
1概况贵石沟井是我局1991年底投产的新矿井,井田内含煤14层,其中15#、12#、8#煤为可采煤层,其它局部可采或不可采。本井田内煤层及围岩的透气性差,煤层瓦斯含量在0.619~17608m3/t,8#、12#煤层瓦斯最大,6#煤层次之,15#煤层瓦斯含量最低,各煤层瓦斯含量见表1。15#煤回采中瓦斯的主要来源是上邻近层。现在我矿开采的15#煤是在上邻近层完全没有开采的条件下直接进行下层开采,煤层平均厚度为7m,属II类易自燃发火煤层,其顶板为泥岩、碳质泥岩及砂岩。在中央采区和北冀采区布置的高档采煤工作面均因顶板难以管理而告失败,在北翼采…  相似文献   

10.
卫华鹏  邓彩 《中州煤炭》2019,(12):84-87
分析了断层、褶曲、顶底板岩性、煤层埋深对矿井瓦斯赋存的影响,煤层埋深是控制瓦斯含量的主导因素,分析了矿井瓦斯地质规律,煤层瓦斯含量与瓦斯压力与煤层埋深一般呈线性相关。研究得出,位于矿井二1煤层埋深450 m处,瓦斯含量为3.89 m3/t 。计算箕山井田瓦斯风化带深度为640 m,研究区全部处于瓦斯风化带内以及埋深与瓦斯压力和瓦斯含量的关系。研究为矿井瓦斯抽放的设计提供理论依据。  相似文献   

11.
豫西三软厚煤层煤巷沿底掘进,随着时间推移,支架会歪斜、弯曲变形,需要及时修复.在维护过程中,若不采取适当措施,易发生顶煤垮落现象,轻则小范围冒顶,重则发生顶煤大面积垮落,导致顶板事故的发生.在维护前通过顶煤预注水,提高其自身支撑能力,也提高了煤巷维修的安全性.  相似文献   

12.
介绍了急倾斜突出矿井煤层群开采技术条件,并基于江西沿涌矿井的32采区开采,论述了急倾斜突出煤层解放层选择,通过对瓦斯突出强弱和保护层的顶板冒落高度数量分析,推荐了合理的突出煤层开采顺序,为矿井工作面接替和安全生产提供有力的保障。  相似文献   

13.
高突煤层保护层瓦斯综合治理技术   总被引:3,自引:0,他引:3  
何勇 《煤炭技术》2006,25(11):68-70
高突煤层作为保护层开采时,其邻近层的瓦斯涌出量很大,上下邻近煤层的卸压瓦斯将大量涌入开采煤层及采空区,严重威胁保护层工作面的安全与生产。文章详细介绍了综合治理C15,B9b邻近煤层的卸压瓦斯技术。  相似文献   

14.
《煤矿安全》2013,(10):192-195
针对沙曲矿北翼高瓦斯近距离煤层群安全高效开采的问题,运用数值模拟和理论分析相结合的方法,分析了近距离煤层群薄煤层保护层开采的卸压机理,提出了对2#薄煤层进行保护层开采。根据北翼2#薄煤层22201首采保护层工作面的实际情况,分析了2#薄煤层保护层开采对下邻近被保护煤层的卸压保护范围,进而确定了保护层开采解放煤量。现场试验结果表明,对2#薄煤层进行保护层开采卸压效果明显,大大提高了被保护煤层瓦斯预抽的效果。  相似文献   

15.
为研究上覆煤层工作面过下伏煤层空巷的难题,基于基安达矿1002工作面突水事故,分析了下伏空巷对上覆煤层开采影响和含下伏空巷煤层开采底板贯通空巷演化过程。结果表明:10号煤层开采后底板破坏深度5.54 m,大于煤层间距5.4 m,下伏空巷对上覆煤层开采有突水威胁;在距空巷0 m应力集中区穿空巷且范围最大,4 m时应力值最大;在过空巷0、4、8 m时空巷左帮、顶板、右帮塑性区依次贯通底板,贯通宽度为2、4、8 m。过空巷8 m时空巷围岩发生大面积破坏此时极易发生突水。  相似文献   

16.
针对新庄孜矿B组煤多层突出煤层开采过程中,大剥皮式的保护层开采方式造成保护范围逐层减小、可采出量严重损失等问题,根据巷道实际布置情况分别选择3个合适位置施工考察钻孔,对B8煤66208工作面开采过程中,B6煤层倾向和走向方向上的瓦斯压力、瓦斯含量和煤层变形进行现场考察。确定B8煤倾向上部、下部卸压角分别为79°和86°,走向方向卸压角75°,实际卸压角均比理论值大,保护范围也发生了扩界。B8煤层开采后B6煤的透气性系数相比原始煤层透气性系数增加了902倍,瓦斯压力和瓦斯含量分别降至0.22 MPa和2.43 m~3/t,B6煤层消突效果显著。  相似文献   

17.
综放工作面由于后部放顶过程中产生的煤尘较大,致使工作面作业环境较差,煤层注水是工作面降尘的主要方法之一。根据泉店煤矿的煤层地质条件选取了合适的注水工艺及注水参数,不但起到了降尘的功效,而且取得了固结煤壁、防止片帮的良好效果。  相似文献   

18.
高产高效矿井建设是煤矿发展的方向.文中探讨了赵各庄矿改变开采9煤层和12煤层传统工艺的方法,运用数值模拟技术对开采方案进行理论支持,同时在选择小工作面优先试采取得成功的基础上,推广到综放工作面.打破了煤层群开采中下伏特厚煤层不能一次全采的传统观念,提出了煤层群更安全、更合理开采的新见解.  相似文献   

19.
新兴矿薄煤层解放层开采数值分析   总被引:1,自引:1,他引:0  
为有效防治冲击矿压灾害,利用FLAC3D数值模拟软件模拟了新兴矿开采上、下解放层对被解放层的卸压效果。结果表明:上解放层开采,63#煤的开采对65#煤起到一定的应力解放作用,但是不够充分;上解放层开采,65#煤的开采对于67#煤起到了解放作用,由于65#煤开采后的底板破坏深度最大为24 m,卸压深度最高达65 m左右,对67#煤的顶底板起到卸压作用;下解放层开采,67#煤的开采顶板破坏高度要大于底板破坏深度,其卸压高度约为70 m左右,对65#煤起到了很好的解放作用。  相似文献   

20.
为消除回采巷道掘进过程中煤与瓦斯突出危险,解决瓦斯涌出量大的问题,采用本煤层定向钻孔与普通钻孔相结合的瓦斯抽采方法,严格落实瓦斯抽放钻孔施工技术措施。实践表明,采取综合瓦斯抽采措施后,消除了突出危险,瓦斯抽采浓度最高达58%,掘进工作面瓦斯浓度控制在0.5%以下,巷道单月最高进尺达到200 m以上,保证了巷道掘进施工安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号