首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
绢云母石英片岩和砂岩的SHPB试验研究   总被引:4,自引:1,他引:3  
 利用液压伺服压力试验机和波形整形器改进后的? 100 mm分离式霍普金森压杆(SHPB)试验装置,研究绢云母石英片岩和砂岩在50~160 s-1应变率等级下的准静态力学性能及其在不同冲击压缩荷载作用下的波形曲线、动态抗压强度、比能量吸收以及破坏形态的应变率效应问题。试验结果表明,绢云母石英片岩和砂岩的动态抗压强度、比能量吸收以及破坏形态均表现出显著的应变率相关性,但弹性模量的应变率相关性较弱。综合绢云母石英片岩和砂岩动态力学性能的对比结果可知,砂岩比绢云母石英片岩对应变率的变化更敏感。从材料的微观结构特征和能量吸收的角度对岩石动态破坏过程进行分析,探寻岩石破坏的本质。研究成果可为其他类型的脆性材料动态力学性能的研究提供参考。  相似文献   

2.
为了研究冲击压缩荷载作用下绢云母石英片岩和玄武岩纤维混凝土的动态抗压强度、破坏情况、能量吸收的应变率效应问题,采用波形整形器改进后的分离式Hopkinson压杆装置,以不同的速度分别对2种材料进行单轴冲击压缩试验.试验结果表明:绢云母石英片岩和玄武岩纤维混凝土的动态抗压强度、破坏情况、能量吸收能力均有显著的应变率相关性...  相似文献   

3.
利用分离式Hopkinson压杆(SHPB)系统,采用铅片作为整形器,分别对常温下及400,600,800℃高温过火后的活性粉末混凝土(RPC)试样进行单轴冲击压缩试验,研究应变率及温度对RPC材料动态力学性能及变形破坏特性的影响规律.结果表明:常温下及高温过火后,RPC材料的动态抗压强度、破碎程度及吸收能量均具有明显的应变率效应,而峰值应变、初始弹性模量及能量吸收率的应变率相关性较弱,且温度对应变率效应没有明显影响;高温过火后,不同应变率下RPC材料的动态抗压强度、初始弹性模量及能量吸收率均有所降低,而峰值应变增大.  相似文献   

4.
围压对砂岩动态冲击力学性能的影响   总被引:10,自引:3,他引:7  
 利用带围压装置的霍普金森压杆设备对砂岩在不同围压等级、不同应变率下的动态力学性能进行试验研究,分析砂岩单轴动态抗压强度和比能量吸收值的应变率效应,围压状态下砂岩在冲击荷载循环作用下的力学特性以及累积比能量吸收值与入射能量、围压等参量之间的关系。研究结果表明,砂岩的动态杨氏模量与静态杨氏模量相比明显增加,两者比值达3.21~3.81;而当应变率为50~100 s-1时,动态杨氏模量随应变率有所增加,但变化不大。砂岩单轴动态压缩试验的比能量吸收值与应变率 呈线性关系,而单轴动态抗压强度增长因子 (即动态抗压强度)与 成线性关系。在围压状态下,砂岩具有明显的脆性–延性转化特征,其应力–应变曲线出现明显的屈服平台,呈近似的弹塑性特征。围压的加载作用对阻止试件产生剪切失稳的作用相当明显。随着冲击荷载循环作用次数的增加,试件的杨氏模量变小,屈服应力降低,屈服应变增加。砂岩的破坏形态随围压大小不同而发生变化,砂岩从轴向拉伸破坏形态向压剪破坏形态转变的临界围压值为10 MPa。在能量相同的入射波作用下,砂岩试件在低围压时比在高围压时的比能量吸收值大,且砂岩的比能量吸收值、入射波能量和围压三者具有良好的规律性,并得到比能量吸收值随入射波能量和围压变化的关系式。  相似文献   

5.
高应变率下预制单节理岩石SHPB劈裂试验能量耗散分析   总被引:1,自引:0,他引:1  
李淼  乔兰  李庆文 《岩土工程学报》2017,39(7):1336-1343
应用SHPB试验装置研究预制单节理岩石的能量耗散关系。使用SHPB试验系统,对高径比为0.5的完整花岗岩试样及预制单节理花岗岩试样进行高应变率下的冲击劈裂试验。在相同驱动气压下,改变加载方向与节理间的夹角,完成高应变率相同入射能下的冲击劈裂试验。对SHPB系统中的入射能、反射能、透射能及试样吸收能的时程变化规律进行了分析;从能量角度出发,分析冲击荷载作用下单节理岩石的能量耗散规律及其各向异性特征。结果表明:高应变率下,完整花岗岩试样在冲击劈裂试验中的吸收能随平均应变率增加而增加,表现出显著的应变率相关性;预制单节理岩石与加载方向之间夹角对破坏模式的影响明显,节理试样产生3种破坏模式:(1)穿越节理面的劈裂破坏;(2)沿节理岩石层面的滑移破坏;(3)劈裂与滑移破坏共同作用下的破坏。在入射能基本相同,入射时间较长时节理岩石试样吸收能较入射时间较短时的吸收能大。动态劈裂试验中,节理试样的吸收能随节理角度变化(0°~90°)近似呈U型。研究成果可为节理岩石动态力学性能研究提供参考。  相似文献   

6.
冲击压缩荷载下角闪岩的动态力学性能试验研究   总被引:4,自引:2,他引:2  
 利用直径为f 100 mm的分离式Hopkinson压杆(SHPB)试验装置和薄圆形紫铜片作为波形整形器,以不同速度轴向冲击角闪岩试样,测试角闪岩试样在应变率范围为40~150 s-1内的动态力学性能,并对试验的一致性进行讨论。考虑试样尺寸大小对试验结果的影响,分析冲击压缩荷载作用下试样的波形曲线,动态抗压强度,强度增强因子,比能量吸收与平均应变率之间的关系。研究结果表明:角闪岩的动态强度增强因子与平均应变率的对数呈近似线性关系,抗压强度与比能量吸收随平均应变率的增加而近似线性增加,同时发现岩石试样的破坏应变基本上随着应变率的增加而增大,体现了显著的应变率相关性,但其初始弹性模量对应变率不敏感。从3个方面对冲击加载下角闪岩的应变率硬化效应进行分析。试验一致性验证结果表明,SHPB试验结果具有较好的可靠性,该试验方法与结论对其他类型的脆性材料动态力学性能的研究具有一定的参考意义。  相似文献   

7.
为分析矿山深部岩石动力学特性及细观裂纹萌生、扩展以及相互贯通的破坏机制,使用改进的霍普金森试验设备,对白云岩进行常规单轴冲击试验,从应力-应变、强度、能量分布方面探讨了矿岩的动态力学性质,并借助高速摄影设备对白云岩试件的冲击破坏形态及模式进行细观描述。试验得到:白云岩试件动态强度随加载应变率从41.5 s-1增大到112.5 s-1,动态抗压强度峰值从104.53 MPa提高到208.6 MPa,且强度峰值出现的时间越来越早;单位体积吸收能随应变率提高呈线性增加关系,破碎块体尺寸随单位体积吸收能的增大而减小;高速摄影细观分析显示,冲击应变率越大,试件完全破坏的发生时间越早,破坏越严重,试件主要破裂面的形成方向与冲击方向一致,属于沿轴方向冲击荷载作用下的拉伸破坏。  相似文献   

8.
为研究三维动静加载下不同长径比煤样力学特性及能量耗散规律,利用改进的分离式霍普金森压杆(SHPB)装置,对直径50 mm,长径比分别为0.5,0.6,0.8和1.0的4组圆柱体试样开展三维动静加载试验,从动态应力和动态应变等方面研究不同长径比煤样的力学特性,并对破碎后煤样进行能量分析。研究结果表明:当试样长径比在0.5~1.0范围内时,动态峰值应力和组合峰值应力均随应变率增大呈乘幂函数关系增长,长径比越大,试样的应变率敏感性越强;相同应变率下,动态峰值应力和组合峰值应力随试样长径比增加而增大,且应变率越大,二者长径比效应越显著。试样动态峰值应变和动态最大应变均随应变率增大呈线性关系增长,不同长径比试样动态峰值应变及动态最大应变的应变率敏感性相差不大,相同应变率下动态峰值应变随试样长径比增加而减小,动态最大应变受预加静载及试样允许的最大变形量双重因素影响,随长径比增加表现为先减小再增大。试样长径比越大,煤的破碎耗能密度越小,破碎程度越高,破坏模式由张拉破坏向剪切破坏转变。研究成果有利于探究动静载叠加作用下冲击失稳破坏机制,为冲击地压防治提供理论支持。  相似文献   

9.
《地下空间与工程学报》2021,17(z1):133-140,179
深部油气井井筒温压环境、应力条件复杂,尤其是多层系开发对于油气井固井水泥环完整性、层间封隔能力以及固井材料控缝止裂能力要求很高。本文在当前油气井常规固井水泥(素水泥)基础之上提出了掺加聚乙烯醇纤维的复合水泥基固井材料。并利用分离式霍普金森压杆试验装置对上述两类油气井固井水泥试样进行冲击加载,采取高速摄影仪记录试样受压形变及破坏全过程。最终对两类固井水泥材料在不同应变率条件下的力学性能、能量耗散及冲击裂缝扩展与破坏特征等进行对比分析,明晰了油气井固井水泥冲击破坏中的应变率效应。研究表明:(1)固井水泥其峰值应力、应变随应变率增加呈升高的趋势;(2)固井水泥能量吸收率随应变率增加而降低,同等条件下聚乙烯醇纤维固井水泥能量吸收效率明显优于常规固井水泥;(3)随着加载应变率增大,固井水泥冲击破碎程度愈严重,其中常规固井水泥破碎程度甚于纤维固井水泥;(4)脆性较高的常规固井水泥试样以劈裂破坏形式为主,塑性较强的纤维固井水泥试样则主要为压碎破坏;(5)聚乙烯醇纤维复合水泥基固井材料通过纤维的协调变形进一步提升材料的能量吸收效率,在射孔冲击中最大程度保障了材料完整性,对于深部油气资源开发中防止层间流体互窜、保障开发层系独立性具有重要意义。  相似文献   

10.
轻质高强混凝土材料已经广泛运用于各种建筑结构中,然而其冲击作用下的动力性能尚不明确。为了探讨其动力性能,设计制作了一系列圆柱体混凝土试件。首先通过静力加载试验获得了其静力强度,然后,采用155mm大直径分离式霍普金森杆(SHPB)设备,对直径为150mm、长径比为0.5的混凝土试件开展了冲击试验研究。采用紫铜片作为波形整形器,该试验中各气压下冲击速度稳定,SHPB试验结果可靠。混凝土试件的破坏模式以脆性碎裂为主,随着冲击速度的增加,破坏后的碎块由条片状逐渐过渡至粉末状。应变率在40~140s-1时,试件的动态强度随着应变率的增大而增大。当冲击速度增加时,能量吸收密度也随之增加,即材料吸收能量的能力显著提高。根据试验结果,拟合了动态应力-应变曲线,以期供相关研究参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号