首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在Ti811钛合金表面利用同步送粉激光熔覆技术,制备了多道搭接激光熔覆层。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析仪(EDS)分析了涂层的组织和相组成。利用显微硬度计测试了涂层的显微硬度。结果表明,涂层的微观组织主要包括基底α-Ti、金属间化合物Ti_2Ni、增强相TiB_2和TiC,且这些相均匀分布,其中TiC以等轴球形或近球形颗粒在长条状TiB_2表面异质形核,形成了大量TiC+TiB_2复合相结构;涂层的显微硬度相比基底有显著提高,最高硬度745HV0.5。  相似文献   

2.
在Ti811钛合金表面采用同步送粉技术,激光熔覆TC4+Ni45+NiCr-Cr_3C_2+CeO_2混合粉末,制备了Ni基激光熔覆涂层。利用光学显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)和能谱分析仪(EDS)等手段分析了涂层的微观组织和相组成,利用显微硬度计测试了涂层的显微硬度。结果表明,涂层主要包括基底α-Ti、金属间化合物Ti_2Ni、硬质相TiC及TiB_2。熔体中加入稀土CeO_2,一方面促进初生树枝晶TiC的生长,另一方面增加共晶TiC的形核率并抑制其长大,最终,TiC在涂层中以树枝晶和等轴共晶两种形态存在。熔覆层的显微硬度最高达到1100 HV1.0,约为基底显微硬度的3倍。  相似文献   

3.
激光熔覆原位自生TiC颗粒增强Ni基复合涂层的组织与性能   总被引:1,自引:0,他引:1  
采用激光熔覆技术在H13钢表面制备出原位自生TiC颗粒增强Ni基复合涂层,利用扫描电镜、能谱仪和X射线衍射仪对熔覆层组织、成分和物相进行了分析,并测试了熔覆层显微硬度和耐磨性能.结果表明,激光熔覆层与基体呈良好的冶金结合,涂层中无裂纹、气孔等缺陷.涂层组织由γ-Ni、Cr7C3和TiC等相组成,原位自生TiC颗粒多呈菱形,尺寸在1~3μm之间,涂层显微硬度(800~1000 HV0.2)明显高于基体的显微硬度(300 HV0.2).激光熔覆层中存在颗粒强化和细晶强化等多种强化作用,显著提高了H13钢的耐磨性能.  相似文献   

4.
利用同步送粉激光熔覆技术在Ti811表面制备了TC4+Ni45+WC+CeO_2激光熔覆层。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析仪(EDS)分析了涂层的组织和相组成,分析了制备过程中的反应机理,利用显微硬度计测试了涂层的显微硬度。结果表明,涂层的α-Ti基底中分布有枝晶Ti C、纳米共晶Ti C(缺位型TiC_x)、TiB_2和金属间化合物Ti_2Ni等相;通过对比发现,加入CeO_2的激光熔覆层生成相密度明显增加,晶界密度明显增大,晶界强化特征明显,枝晶TiC粒径相对粗大,涂层中二次析出的纳米共晶Ti C依附于枝晶Ti C生长,形成了纳米共晶TiC+枝晶TiC的复合相结构;涂层的显微硬度高于基底的,涂层的最高硬度为697 HV0.5,较基底提高了约0.8倍。  相似文献   

5.
TC4钛合金表面激光熔覆复合涂层的组织和耐磨性   总被引:1,自引:0,他引:1  
采用5 kW横流CO2激光器,在TC4钛合金表面熔覆TiC、TiB2与Ni的混合粉末,制备了无气孔、无裂纹、组织均匀致密的复合涂层。用SEM、EDS、XRD、显微硬度计以及立式万能摩擦磨损试验机分析了激光熔覆层的显微组织、成分和物相,测试了激光熔覆层横截面显微硬度,以及覆层耐磨性能。结果表明,激光熔覆复合涂层与基体呈冶金结合;熔覆层组织从表层到结合区呈现出由棒状、块状向树枝状、颗粒状转变的趋势,且主要由Ti、TiC、TiB、Ti2Ni、TiNi等相组成;熔覆层显微硬度最高可达863 HV0.2,为基体的2.5倍;熔覆层耐磨性能较TC4钛合金明显提高。  相似文献   

6.
利用激光熔覆技术在0Cr18Ni9奥氏体不锈钢表面制备了NiCrMn-TiC/WC-La_2O_3硬质合金耐磨涂层。采用X衍射仪、扫描电镜、能谱仪分析了熔覆层的物相组成及显微组织。测试了涂层的显微硬度,并在室温环境下对涂层进行干滑动摩擦磨损试验。结果表明:涂层主要由γ-(Ni,Fe)共晶化合物、未溶解的TiC和WC、原位生成的M_7C_3、TiC和(Ti,W)C、WC碳化物硬质相以及少量La_2O_3和Cr_3C_2组成。激光熔覆层的显微硬度大幅提高,显微硬度平均值为1172.74 HV,约为基体的3.48倍。熔覆层的摩擦系数和磨损率明显低于基体,磨损率约为基体的1/4。磨损试验过程中在涂层表面生成的大量含氧粘附层出现在涂层表面,有利于提高涂层的耐磨性。  相似文献   

7.
目的研究Ti811合金表面激光熔覆涂层的微观组织及磨损性能。方法利用激光熔覆技术,在Ti811合金表面激光熔覆原位合成了Ti C+Ti B2增强镍基复合涂层。利用X射线衍射仪(XRD)、扫描电镜(SEM)、电子探针(EPMA)、显微硬度计和摩擦磨损试验机,系统地研究了熔覆层的物相组成、显微组织、显微硬度及摩擦磨损性能,并利用二维点阵错配度理论对Ti C的细化机理进行分析。结果激光熔覆涂层与基体呈良好的冶金结合,熔覆层生成物相主要由Ti C、Ti B2、Ti2Ni和γ-Ni组成,其中Ti C呈等轴枝晶状和花瓣状,Y2O3的(111)面与Ti C的(110)面之间的二维点阵错配度为6.813%,Y2O3作为Ti C的非均质形核核心为中等有效。熔覆层的平均显微硬度为913.93HV0.5,约为基体Ti811硬度的2.4倍。熔覆层摩擦系数稳定在0.45~0.52之间,磨损机理主要为粘着磨损与磨粒磨损。结论采用激光熔覆技术能够在Ti811合金表面成功制备Ni基复合增强涂层。熔覆层中Y2O3颗粒具有细晶强化、弥散强化、增加形核率的作用,熔覆层具有较高的显微硬度与良好的耐磨损性能。  相似文献   

8.
在45钢表面激光熔覆原位合成TiC颗粒增强Fe基复合涂层。利用扫描电镜、能谱仪和X射线衍射仪对TiC/Fe复合涂层的显微组织、合金成分以及物相进行分析,测试了熔覆层的显微硬度和耐磨性能。结果表明,当(Ti+C)的含量在复合粉末中的比例达到15%时,熔覆层生成了少量的TiC颗粒,其形状呈多面体和花瓣状,直径为1~5μm,长度为3~5μm,TiC增强相组织中含有Fe、Cr等元素,而不是单纯的二元碳化物。由于少量TiC颗粒的团聚现象,造成TiC激光熔覆层的显微硬度低于Fe基熔覆层,但TiC激光熔覆层磨损性能优于Fe基熔覆层。  相似文献   

9.
利用半导体激光器在TC4钛合金表面激光熔覆Ni60+Ti_3Si C_2混合粉末,成功制备了Ni基自润滑复合涂层。利用OM、SEM、XRD、EDS等分析了涂层的微观组织及物相组成,利用显微硬度计和摩擦磨损试验机测试了涂层的显微硬度和摩擦磨损性能。结果表明:不同Ti_3Si C_2含量的涂层主要由TiC、TiB_2、Ti_5Si_3、Ti_3SiC_2、γ-Ni基体等物相组成,涂层组织分布致密均匀;涂层的显微硬度显著提高主要归功于TiC、TiB_2硬质相的存在,当Ti_3SiC_2含量为7.5%时显微硬度最高,为1150 HV0.2;当Ti_3SiC_2含量为10%时,摩擦因数稳定在0.26~0.30,磨损量最小为1.2 mg。  相似文献   

10.
利用6 kW光纤激光器在Cr12MoV汽车模具钢表面激光熔覆含有Ti-Fe,B4C粉末的铁基合金粉,在汽车模具钢表面直接原位合成TiC+TiB2颗粒增强的铁基合金复合涂层.涂层与基体呈良好的冶金结合,涂层组织细小,结构致密,宏观质量较好. XRD分析结果表明,涂层组织由α-Fe,TiC,TiB2组成. TiC,TiB2相均匀分布于熔覆层中.由于TiC,TiB2硬质相的形成以及激光的快速凝固冷却获得的细晶组织,使得熔覆层的显微维氏硬度有了明显提高.在距离熔覆层表面1.2 mm处显微维氏硬度高达1000 HV,有利于促进熔覆层耐磨性的提高.  相似文献   

11.
利用Ni60自熔合金粉末、 TiFe粉、石墨、 CaF_2,稀土,经适当比例混合后采用激光熔覆技术在35CrMo基材表面制备TiC/Ni60基涂层,对熔覆层宏观形貌、硬度、磨损后的微观形貌进行观察和研究,同时对比了TiC/Ni60基涂层与Ni60涂层的磨损试验。结果表明:经激光熔覆后熔覆层平均显微硬度明显提高,高于Ni60涂层硬度, w(CaF2)8%的粉末涂层与Ni60涂层相比,耐磨损性能提高。  相似文献   

12.
利用氩弧熔覆技术,以Ni60自熔合金粉、钛粉和石墨粉为原料,在45#钢表面原位反应合成了以TiC颗粒为增强相的Ni基复合涂层。利用金相、SEM、XRD等技术分析了涂层的显微组织,利用显微硬度仪测试了熔覆层显微硬度,用自制磨损试验机对比了熔覆层与淬火回火65Mn钢的耐磨性。结果表明,熔覆层成形良好,无裂纹、气孔等缺陷,与基体呈冶金结合;熔覆层的组织为γ—Ni奥氏体枝晶、CrB、TiB2、Cr23C6、Fe23C6及反应合成的弥散分布的球状TiC陶瓷颗粒;熔覆层显微硬度呈梯度分布,且越靠近基体表面,硬度越低;熔覆层具有优良的耐磨性能。  相似文献   

13.
目的研究Cr元素含量对TC21钛合金表面激光熔覆Ni-Al涂层组织与性能的影响,改善其表面性能。方法利用激光熔覆技术在TC21钛合金表面制备不同Cr含量的Ni-Al涂层,采用带有能谱仪(EDS)的扫描电子显微镜(SEM)、X射线衍射仪(XRD)对熔覆层的显微组织、物相组成进行分析,采用显微硬度计和材料表面性能综合测试仪测试熔覆层的硬度分布和耐磨性能。结果熔覆层表面质量良好,未添加Cr元素时,熔覆层主要由Ni(Al,Ti)、Ni_2AlTi、Ti Ni等物相组成;添加Cr元素后,熔覆层中有α-Cr沉淀相析出,并且随着Cr元素含量的逐渐提高,Ti Ni、Ni_2AlTi、α-Cr等物相的相对含量逐渐增加。熔覆层主要由Ni(Al,Ti)枝晶组织与其周围呈网状分布的Ti Ni、Ni_2AlTi、α-Cr晶间组织构成。熔覆层的显微硬度均提高到基体的2倍左右,Cr元素对提高Ni-Al涂层显微硬度的影响不大,但能使其显微硬度波动减小,趋于平稳,熔覆层的韧性随着Cr元素含量的增加而不断提高。当Cr元素添加量为20%(原子数分数)时,耐磨性最好,约为基体的2.948倍。结论 Cr元素的添加,有利于熔覆层中α-Cr相的析出和Ti Ni/Ni_2AlTi共晶组织的生成,能有效降低熔覆层的室温脆性,提高塑韧性及耐磨性能。  相似文献   

14.
为改善Ti6Al4V钛合金的表面硬度和耐磨性能,采用液氮强制冷却辅助激光熔覆制备35%WC/Ni60A (质量分数,下同)复合涂层,研究液氮强制冷却对熔覆层微观组织和力学性能的影响。利用XRD、OM、EM和EDS分析液氮强制冷却熔覆层的显微组织和物相组成;通过硬度试验,磨损试验探究液氮强制冷却熔覆层的硬度及抗磨损性能。结果表明,液氮强制冷却熔覆层由α(Ti),WC,W_2C,TiC,TiNi,Ti_2Ni,TiNi_3,NiB相构成。液氮强制冷却熔覆层的平均显微硬度HV_(0.2)达到13.63 GPa,硬度较基体和空冷熔覆层分别提高4倍和1.61倍。此外,液氮强制冷却熔覆层耐磨性分别为基体和空冷熔覆层的5.39倍和1.77倍。  相似文献   

15.
采用HL-5000型横流CO2 激光加工机,在TC4钛合金表面制备了表面平整、细密、消除了裂纹与孔隙的TiC复合涂层.通过SEM、EDAX、XRD、HXD-1000TMC型显微硬度计和HT-600型高温摩擦磨损试验机,分析了熔覆层的显微组织、成分、物相,测试了激光熔覆层的显微硬度和滑动摩擦磨损性能.结果表明,激光熔覆制备的TiC复合涂层与基体呈冶金结合,涂层中有大量小块状、针状TiC颗粒和TiC树枝晶,熔覆层的显微硬度达880~ 1087 HV0.1,耐磨性能比TC4钛合金显著提高.  相似文献   

16.
刘亚楠  孙荣禄  牛伟  张天刚 《表面技术》2018,47(12):134-141
目的 研究激光扫描速度对激光熔覆层组织与性能的影响。方法 采用通快TRUMPF Laser TruDisk 4002光纤激光器,在扫描速度分别为300、400、500 mm/min时,制备激光熔覆Ni基增强涂层,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析仪(EDS)分析了熔覆层的微观组织和物相组成,利用显微硬度计及摩擦磨损试验机测试了熔覆层的显微硬度和耐磨损性能。结果 熔覆层主要由TiC、TiB2、Ti2Ni及γ-Ni等物相组成。随着扫描速度的增加,Ti811基材烧损程度逐渐减弱,熔覆层宽度W、高度H、基体熔深h及稀释率λ均逐渐减小。当扫描速度为500 mm/min时,熔覆层组织明显细化,平均显微硬度可达920HV0.5,超过基体硬度的2倍。扫描速度为300、400、500 mm/min时,熔覆层的平均摩擦系数分别为0.45、0.40、0.38,平均磨损量为2.1、1.7、1.4 mg。结论 采用激光熔覆技术能够在Ti811表面成功制备Ni基复合增强涂层。选择适当的激光扫描速度可以改善熔覆层显微组织,当激光扫描速度为500 mm/min时,熔覆层晶粒细小,组织分布致密均匀,显微硬度与耐磨损性能显著提高。  相似文献   

17.
利用激光熔覆技术在45钢表面制备了Ni基合金熔覆层,通过SEM、XRD等方法研究涂层相及组织,测试截面显微硬度。利用HT-1000型摩擦磨损设备对其摩擦磨损性能进行研究。结果表明:熔覆层与基体成冶金结合,结合质量良好;熔覆层组织具有定向凝固特征且晶粒生长方向垂直于界面;熔覆层主要由Ni3Cr2、NiTi、SiC、TiC及γ-Ni等相组成;熔覆试样的磨损质量损失约为基材的1/8,基材耐磨性得到显著提高。  相似文献   

18.
TC4钛合金表面激光熔覆掺Y2O3复合涂层的显微组织和性能   总被引:2,自引:2,他引:0  
目的提高钛合金表面的耐磨性能。方法在TiB_2:TiC=1:3的粉末配比下,添加不同质量分数Y_2O_3稀土氧化物,制备成膏状混合粉末。采用5 k W横流CO_2激光器,在TC4钛合金表面激光熔覆掺Y_2O_3的TiB_2和TiC粉末,制备耐磨性复合涂层。通过扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)对激光熔覆层的微观形貌和组织成分进行了分析;用显微维氏硬度计对熔覆层的显微硬度进行了测量;用万能摩擦磨损试验机对熔覆层的耐磨性能进行了测试。结果添加4%Y_2O_3后,熔覆层中部组织明显细化,结合区由致密组织结构转变为晶须网状结构;熔覆层的最高显微硬度为1404.6HV0.2,是基体的3.7倍;熔覆层的磨损量减少了66.67%,且其摩擦系数有明显的降低。结论添加4%Y_2O_3对TC4钛合金表面激光熔覆TiB/TiC复合熔覆层耐磨性能有显著的提高。  相似文献   

19.
目的研究Al-TiC涂层组织和性能的特性,以提高镁合金涂层的硬度和耐蚀性能。方法采用Nd:YAG固体激光器,在AZ91D镁合金表面通过激光熔覆制备Al-TiC涂层,采用光学显微镜、X射线衍射仪、显微硬度计、电化学工作站,对熔覆层的组织形貌、物相结构、显微硬度和耐蚀性能进行测定和分析。结果 Al-TiC涂层的主要组成相有AlTi_3(C,N)_(0.6),Al_3Mg_2,Mg_2Al_3,Al和TiC等。激光熔覆层的厚度约为0.35 mm,表面成型良好,结合层晶粒细小,熔覆层与镁合金基体之间结合良好,呈大波浪形。熔覆层试样的平均显微硬度为224HV,约为基体显微硬度(62HV)的4倍,由此表明熔覆层对镁合金硬度有明显的增强作用。镁合金基体的自腐蚀电位为-1.475 V,自腐蚀电流密度为7.556×10~(–5) A/cm~2,熔覆层试样的自腐蚀电位为-1.138V,自腐蚀电流密度为4.828×10~(–5) A/cm~2,与镁合金基体相比,熔覆层的腐蚀电位值增加,腐蚀电流密度值变小,熔覆层的耐蚀性能得到提高。结论采用激光熔覆技术,能够在AZ91D镁合金基体表面制备Al-TiC涂层,由于硬质相AlTi_3(C,N)_(0.6),Al_3Mg_2,Mg_2Al_3,TiC等的存在,熔覆层的显微硬度和耐蚀性能显著提高。  相似文献   

20.
在Ti6Al4V合金表面预置Ti和Cr3C2混合粉末,采用横流CO2激光进行熔覆试验,制备出了原位自生的TiC颗粒增强的钛基复合涂层.利用SEM、XRD等手段对激光熔覆层的组织、成分、物相进行了分析,测试了激光熔覆层的显微硬度.结果表明,熔覆层不同位置,组织形态不同,TiC在熔覆层表层以树枝晶形态存在,而在熔覆层底部为近球状颗粒.熔覆层与基材之间形成良好的冶金结合.熔覆层显微硬度在600~800 HV0.5之间,约为基材硬度的2~3倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号