首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以N,N-二甲基甲酰胺(DMF)和四氢呋喃(THF)为混合溶剂配制聚碳酸酯基热塑性聚氨酯(PU)纺丝溶液,通过静电纺丝法制备PU纳米纤维。重点研究了纺丝溶液浓度、混合溶剂中DMF和THF的体积比、纺丝电压和纺丝溶液流速对PU纳米纤维形态、直径及其分散性的影响。结果发现,纺丝液浓度为12%,混合溶剂中DMF与THF体积比为1∶1,纺丝电压为10 kV,纺丝溶液流速为0. 8 m L/h时,通过静电纺丝法制得的PU纳米纤维粗细均匀,表面光滑,纤维之间无粘连现象,形成的纳米纤维膜空隙率高。  相似文献   

2.
同轴静电纺丝法制备的聚乳酸-乙醇酸(PLGA)纳米纤维具有良好的生物相容性和生物可降解性, 加之其高孔隙率和高透氧率, 使其能成为优良的药物载体。本文初步摸索了PLGA的同轴静电纺丝的工艺条件, 并通过同轴静电纺丝法制备了PLGA载氟比洛芬酯(FA)的纳米纤维膜, 应用扫描电子显微镜、红外光谱分析观察纤维的表观形貌并确定其微观结构。重点探究了不同溶剂配比的混合溶剂对载药纤维膜药物释放性能影响。研究结果表明在U+为+15.00kV, U-为-2.50kV, 接受距离为15cm, 壳层推进速度为0.4mm/min, 芯层推进速度为0.1mm/min进行静电纺丝时, 所制备的PLGA(壳)/PVP+FA(核)复合载药纤维膜壳核结构良好, 且成功载了约0.5%的FA。当改变壳层混合溶剂(DCM和DMF)和芯层混合溶剂(无水乙醇和DMF)体积比时, 纤维直径会随着DMF的减少而增大。  相似文献   

3.
刘科  钟志成  乔辉 《塑料科技》2020,48(4):51-54
采用静电纺丝法制备了不同溶剂和纺丝变量下的聚苯乙烯(PS)纳米纤维,并研究了溶剂及盐助剂的种类对PS纳米纤维的形态以及直径的影响。以N,N-二甲基甲酰胺(DMF)作为溶液时,纺丝液的电导率较高,黏度较低;且纺丝液中的PS纳米纤维呈现串珠状,直径较低。当加入无机盐氯化锌(ZnCl2)后,PS纳米纤维出现分支状结构,加入有机盐十二烷基苯磺酸钠(SDBS)则不会出现这一现象。SEM测试结果表明,用DMF为溶剂,SDBS为盐类添加剂可以获得具有较规整形态及较低直径的PS纳米纤维。  相似文献   

4.
将水性聚氨酯(WPUR)与聚乙烯醇(PVAL)按照不同质量比制备质量分数为8%的纺丝溶液,通过静电纺丝制备WPUR/PVAL复合纳米纤维。运用扫描电子显微镜、傅立叶变换红外光谱仪和X射线衍射仪对WPUR与PVAL质量比不同的纺丝溶液制备的复合纳米纤维的微观形貌和结构进行分析。实验结果表明,PVAL的含量对复合纳米纤维的形成和形貌起着决定性的作用,随着溶液中PVAL含量的增加,纺丝过程中纺丝液逐渐从不连续复合纳米纤维转变为连续均匀的复合纳米纤维,纤维直径逐渐增大,当纺丝液中WPUR与PVAL的质量比为30∶70时,得到的复合纳米纤维形貌最佳,其平均直径为330.8 nm,具有最小标准差,为22 nm,同时随着纺丝溶液中PVAL含量的增加,所得复合纳米纤维的结晶性能增强。  相似文献   

5.
静电纺丝法是聚合物溶液或熔体在静电作用下进行喷射拉伸而获得纳米级纤维的纺丝方法。聚偏氟乙烯(PVDF)具有优异的压电性能,而通过静电纺丝技术制得的聚偏氟乙烯静电纺丝膜具有高孔隙率、轻薄柔韧、透气性好等优点从而广泛应用在传感材料、电池隔膜和生物材料等领域。为了研究最适纺丝工艺,本文通过调节不同的纺丝电压、聚合物溶液浓度以及N,N-二甲基甲酰胺(DMF)和四氢呋喃(THF)的溶剂配比,利用静电纺丝的方法制备PVDF纳米纤维,并使用扫描电镜对纤维的微观形貌表征,以及乌式黏度计对纺丝液黏度进行测试。结果表明:当纺丝液浓度为10%PVDF,混合溶剂配比为DMF∶THF为60∶40,纺丝电压为15 kV时,电纺的PVDF纤维膜直径分布均匀,具有良好的微观形貌,并且孔隙率高。  相似文献   

6.
为了研究静电纺丝溶液性质对聚乳酸(PLA)/茶多酚(TP)复合纳米纤维膜的形貌与直径的影响,本文借助扫描电子显微镜(SEM)观察不同纺丝溶液条件下纳米纤维膜的外观形貌并计算纤维直径。结果表明:当PLA溶质质量分数为10%时,纤维成纤性最好。而纺丝溶剂采用二氯甲烷(DCM)和N,N-二甲基甲酰胺(DMF)的混合溶剂时,纤维形貌改善明显。同时不同PLA/TP质量混比条件下的纤维直径在380~854nm之间。  相似文献   

7.
将N,N-二甲基甲酰胺(DMF)和四氢呋喃(THF)按体积比0:4、1:3、2:2、3:1、4:0混合作为溶剂,确定配比后,在不同浓度、电压下对热塑性聚氨酯(TPU)溶液进行静电纺丝。结果表明,DMF与THF的体积比对聚氨酯静电纺丝纤维的形貌、直径及其均匀性有明显影响,当混合溶液体积比为2:2,浓度为0.18g/mL,电压为26kV时,TPU纺丝液纺丝效果最佳,得到最理想的纤维;纤维直径随DMF含量的增多而减小,但当DMF含量过多时,纤维上容易出现液滴,纤维形貌变差;TPU纺丝液浓度增大,纤维直径增大;电压增大,纤维直径减小。  相似文献   

8.
采用静电纺丝技术制备了聚乙烯吡咯烷酮/二苯基丙氨酸(PVP/FF)复合纳米纤维;考察了FF含量、纺丝液流速对电纺纤维形貌及其平均直径的影响;利用扫描电镜对纤维表面形态进行了观察,通过X射线衍射和热重分析考察了纳米纤维中FF的存在状态及纳米纤维的热稳定性;通过全反射红外光谱分析了FF与PVP之间的相互作用。结果表明:当复合纤维中FF质量分数小于2%时,共混溶液的可纺性较好;复合纳米纤维直径随着FF含量的增大而先减小后增加,当FF的质量分数增加到5%时,复合纳米纤维的直径也相应增大;随着纺丝液流速的增大,复合纳米纤维的直径有逐渐增大的趋势,当纺丝液流速在0.2~0.6mL/h时,复合纳米纤维形貌较佳,纤维直径分布均匀,表面光滑无颗粒;PVP/FF复合纳米纤维中FF与PVP发生复合作用处于分散的无定形状态,分解温度范围变宽;FF与PVP之间具有良好的相容性。  相似文献   

9.
采用聚醚砜(PES)的良溶剂二甲基甲酰胺(DMF)和非良溶剂丙酮(AC)为共溶剂体系,研究了溶剂组成、纺丝成形条件对静电纺丝PES纤维的形貌及纤维直径的影响。结果表明:DMF/AC的配比对于静电纺丝PES纤维形貌具有直接的调控作用,随着DMF/AC混合溶剂中AC用量的增加,纤维平均直径变大,纤维毡中串珠数目明显减少,纤维均一性变好;随着纺丝液浓度的升高,纺丝电压的增大,纤维的平均直径变大;接收距离的变化对纤维平均直径影响不大;PES最佳纺丝工艺条件为纺丝溶液质量分数13%,纺丝电压15 kV,接收距离10 cm,mDMF/mAC为8.5/1.5,在此条件下,可以获得纤维平均直径为96 nm的PES纤维毡。  相似文献   

10.
利用静电纺丝技术制备了具有微孔结构的聚醚酰亚胺(PEI)纳米纤维,在此基础上采用同轴共纺技术获得了有机玻璃/聚醚酰亚胺(PMMA/PEI)纳米复合纤维,考察了不同的纺丝工艺参数对PEI和PMMA/PEI纤维形貌的影响. 实验结果表明,在低浓度下单纺可获得直径0.05~0.5 mm的PEI微孔纳米纤维,使用同轴共纺技术能获得表面光滑的PMMA/PEI复合纳米纤维;经过4 MPa压置处理10 min的复合纳米纤维薄膜的拉伸强度随PEI含量的增加有所提升.  相似文献   

11.
PVP/PEO复合微纳米纤维的电纺性研究   总被引:1,自引:0,他引:1  
采用聚乙烯毗咯烷酮/聚氧化乙烯/水(PVP/PEO/H2O)体系进行静电纺丝制备PVP/PEO复合微纳米纤维,研究了PVP/PEO共混溶液浓度、PVP相对分子质量及PVP:PE0(质量比)对PVP静电纺丝的影响.结果表明:当溶液质量分数增大到15%、PVP相对分子质量为1.3×106或PEO含量增大时,均可制得形貌清晰、表面光滑的微纳米纤维.当PVP/PEO溶液质量分数为12%、PVP相对分子质量为1.3 × 106及PVP:PE0(质量比)为8:2时,静电纺丝所得纤维形貌最佳.  相似文献   

12.
利用静电纺丝技术制备了一种聚丙烯腈(PAN)/氧化铁(Fe_2O_3)纳米粒子复合纳米纤维。不同分子量的PAN得到不同直径的纤维薄;将PAN的N,N-二甲基甲酰胺溶液(DMF)与纳米Fe_2O_3混合得到PAN/Fe_2O_3溶液,然后利用静电纺丝技术制备PAN/Fe_2O_3纳米粒子复合纳米纤维;将静电纺丝制备的PAN纳米纤维膜与氯化铁(FeCl_3)溶液在不同p H条件下水热合成PAN/Fe_2O_3纳米粒子复合纳米纤维。采用扫描电子显微镜(SEM)、热重分析仪(TGA)对纳米纤维膜进行表征。结果表明:静电纺丝制备的PAN纳米纤维在水热条件下可以一定程度上克服Fe_2O_3纳米粒子易团聚问题。  相似文献   

13.
采用2种pH敏感材料(Eudragit S100和Eudragit RS100),通过同轴静电纺丝技术制备了壳/核结构载木犀草素纳米纤维膜,通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)等研究了壳/核结构载木犀草素纳米纤维膜的表面形貌、化学结构和药物释放性能。结果表明:壳/核结构载木犀草素纳米纤维膜表面整体较光滑,纳米纤维平均直径随木犀草素含量增加而增大。该纳米纤维膜具有良好的结肠靶向性和生物相容性。  相似文献   

14.
利用聚酰胺酸(PAA)溶液和纳米碳化硅(SiC)混合物作为纺丝液,通过静电纺丝法制备聚酰胺酸/碳化硅(PAA/SiC)复合纳米纤维,PAA/SiC复合纳米纤维亚胺化后得到聚酰亚胺/碳化硅(PI/SiC)复合纳米纤维。研究了PAA溶液中PAA含量、纺丝电压、纺丝距离及SiC含量对PAA/SiC复合纳米纤维形貌的影响,利用热重法分析了PI/SiC复合纳米纤维的热稳定性。结果表明,使用固含量为15%的PAA溶液作为基体材料,再将纳米SiC以6%的含量均匀分散于基体材料中制备出纺丝液,在纺丝电压为10~18kV左右、纺丝距离为15cm时,可制备出直径250nm左右、光滑、连续、SiC分布均匀的PAA/SiC复合纳米纤维。PI/SiC复合纳米纤维热稳定性优异,氮气气氛中热分解温度为550℃。  相似文献   

15.
采用静电纺丝法制备了聚砜(PSf)纳米纤维作为正渗透复合膜的支撑层,在此基础上通过界面聚合反应制备了正渗透膜。考察了纺丝液自身性质,PSf含量以及溶剂N,N-二甲基甲酰胺(DMF)与N-甲基-2-吡咯烷酮(NMP)比例对PSf支撑层微观结构及其性能影响。结果表明,纺丝液的PSf质量分数为20%,NMP/DMF体积比为3/7时得到的纺丝纤维均匀无瑕疵,平均纤维直径为396 nm,平均孔径为1.34μm,孔隙率为75.77%。经界面聚合反应在PSf支撑层表面形成聚酰胺活性层,经测试其水通量为42.17 L/(m~2·h),比3种商品膜水通量提高了3倍以上。  相似文献   

16.
研究了纺丝液浓度对聚丙烯腈(PAN)静电纺丝纤维直径,以及对PAN静电纺丝纳米纤维膜复合滤材过滤性能的影响。测试结果表明,纺丝液浓度增加,静电纺丝纤维直径变粗,孔径增大,其中质量分数为16%的纺丝液具有良好的纺丝性能,静电纺丝所得的纳米纤维直径均匀,复合后滤材在颗粒直径0.3μm,过滤风速5.3 cm/s的测试条件下,过滤效率达到99.98%,阻力为138 Pa,达到H13级别,具有高效低阻特性。  相似文献   

17.
利用同轴共纺技术制备了芯层为聚醚酰亚胺(PEI),壳层为聚甲基丙烯酸甲酯(PMMA)的复合纳米纤维无纺布,在PEI熔点以下,利用热压技术将壳层的PMMA熔融构成复合材料的树脂基体,PEI纳米纤维成为PMMA树脂基体中的纤维增强体。通过对复合纳米纤维结构和热力学特性的研究表明,同轴共纺技术有效解决了PEI静电纺丝困难的问题,芯层PEI结构形貌良好并均匀分布于复合纳米纤维中,结合复合材料的力学性能、断面分析和透光性能表征,结果表明,当PEI质量分数在2%~3%时,复合材料的拉伸强度提高幅度接近25%,而复合材料的可见光透过率仅比纯PMMA材料下降了9%,仍具有良好的透光性能。  相似文献   

18.
通过静电纺丝,将苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)溶解于四氢呋喃(THF)中的纺丝液制备成SEBS纤维,探索了纺丝液质量分数、纺丝电压和接收距离对纤维形貌及直径的影响。通过扫描电镜观察SEBS纤维的形貌以及Photoshop软件测量了SEBS纤维的直径。结果表明,纺丝液质量分数为25%、纺丝电压为10 kV、接收距离为15 cm时,纤维成型性良好,平均直径为9.7727μm;纤维直径随着电压的增大而减少,随着接收距离的增大而先减小后增大。  相似文献   

19.
以再生丝素蛋白水溶液为皮层纺丝液,去离子水为芯层纺丝液,探讨了同轴静电纺制备丝素蛋白组织工程支架材料的最佳工艺参数。结果表明,随着皮层纺丝液质量分数的提高,支架材料的表观形貌逐渐变好;当皮层纺丝液的质量分数为39%(w)、流速为1.2 m L/h,芯层纺丝液流速为0.3 m L/h时,可制备出表观形貌好、纤维粗细均匀且具有稳定皮芯结构的支架材料。文章探索得到的同轴静电纺丝工艺可用于载药组织工程支架材料的制备,并在组织工程修复领域具有良好的应用前景。  相似文献   

20.
将维生素(VC)溶解在质量分数8%的聚乙烯醇(PVA)水溶液中,通过静电纺丝制得PVA/VC共混纳米纤维。分析了VC含量对溶液性能及静电纺丝速度的影响;测试了纤维的形貌结构及力学性能。结果表明:PVA/VC共混溶液属于切力变稀流体;当PVA/VC质量比为100/10或100/20时,共混溶液的电导率和静电纺丝速度较纯PVA溶液明显提高,制得的纳米纤维表面光滑,粗细均匀;与纯PVA纳米纤维比较,其平均直径和拉伸强度降低,断裂伸长率提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号