首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Hybrid polymer dry electrolytes comprised of poly(ethylene oxide) (PEO), polyacrylonitrile (PAN), and LiClO4 were investigated. The impedance spectroscopy showed that the effect of PAN on the ion conductivity of PEO‐based electrolytes depends on the concentration of lithium salt. When the mole ratio of lithium to oxygen is 0.062 (15%LiClO4‐PEO), adding PAN will increase the ionic conductivity. Differential scanning calorimetry, NMR, and IR data suggested that the enhanced conductivity was due to both the decreasing of the PEO crystallinity and increasing of the degree of ionization of lithium salt. There was obviously no interaction between PAN and lithium ions, and PAN acts as a reinforcing filler, and hence contributes to the mechanical strength besides reducing the crystallinity of the polymer electrolytes. When the LiClO4‐PEO‐PAN hybrid polymer electrolyte was heated at 200°C under N2, PAN crosslinked partially, which further decreased the crystallinity of PEO and increased the ionic conductivity, and at the same time prevented the recrystallization of PEO upon sitting at ambient environment. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1530–1540, 2006  相似文献   

2.
《Polymer Composites》2017,38(9):1792-1799
A series of poly(acrylonitrile‐co‐hexyl methacrylate), PAN‐co‐PHMA, copolymers with various hexyl methacrylate (HMA) contents were synthesized by emulsion technique. The incorporation of HMA units into the copolymers was confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. Glass transition temperatures (T g) and thermal decomposition temperatures of copolymers were determined by differential scanning calorimetry and thermogravimetric analysis. The T g of copolymers were lowered monotonically by increasing HMA content, while thermal stabilities of copolymers were enhanced. The frequency dependence of dielectric properties of three different amounts of LiClO4 salt doped copolymer films was investigated. The influence of molar fraction of HMA on dielectric constant and ac‐conductivity of copolymer films was examined. Samples with higher HMA contents showed better stability and conductivity, as a result of increase in free volume and the mobility of the dipoles. The ac conductivity of copolymers was also improved by increasing LiClO4 salt which was due to the existence of more charge carriers. PAN(88)‐co‐PHMA(12) copolymer with 1.5 mol% of lithium salt exhibited ionic conductivity of the 7.8 × 10−4 S/cm at 298 K. POLYM. COMPOS., 38:1792–1799, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
The synthesis of polyacrylonitrile‐block‐poly(ethylene oxide) (PAN‐b‐PEO) diblock copolymers is conducted by sequential initiation and Ce(IV) redox polymerization using amino‐alcohol as the parent compound. In the first step, amino‐alcohol potassium with a protected amine group initiates the polymerization of ethylene oxide (EO) to yield poly(ethylene oxide) (PEO) with an amine end group (PEO‐NH2), which is used to synthesize a PAN‐b‐PEO diblock copolymer with Ce(IV) that takes place in the redox initiation system. A PAN‐poly(ethylene glycol)‐PAN (PAN‐PEG‐PAN) triblock copolymer is prepared by the same redox system consisting of ceric ions and PEG in an aqueous medium. The structure of the copolymer is characterized in detail by GPC, IR, 1H‐NMR, DSC, and X‐ray diffraction. The propagation of the PAN chain is dependent on the molecular weight and concentration of the PEO prepolymer. The crystallization of the PAN and PEO block is discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1753–1759, 2003  相似文献   

4.
A new poly(propylene carbonate)/poly(ethylene oxide) (PEO/PPC) polymer electrolytes (PEs) have been developed by solution‐casting technique using biodegradable PPC and PEO. The morphology, structure, and thermal properties of the PEO/PPC polymer electrolytes were investigated by scanning electron microscopy, X‐ray diffraction, and differential scanning calorimetry methods. The ionic conductivity and the electrochemical stability window of the PEO/PPC polymer electrolytes were also measured. The results showed that the Tg and the crystallinity of PEO decrease, and consequently, the ionic conductivity increases because of the addition of amorphous PPC. The PEO/50%PPC/10%LiClO4 polymer electrolyte possesses good properties such as 6.83 × 10?5 S cm?1 of ionic conductivity at room temperature and 4.5 V of the electrochemical stability window. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
A new conducting copolymer, polyacrylonitrile‐graft‐polyaniline (PAN‐g‐PANi), has been prepared by chemical and electrochemical methods from a precursor polymer. Poly[acrylonitrile‐co‐(acrylimine phenylenediamine)] (PAN‐co‐PAIPD) was synthesized chemically by reacting PAN with sodium 1,4‐phenylenediamine salt. PAN‐g‐PANi was synthesized chemically using ammonium peroxydisulfate as the oxidant and p‐toluenesulfonic acid in dimethylsulfoxide solution and adding aniline to oxidized PAN‐co‐PAIPD. Electrochemical polymerization was carried out by spin coating PAN‐co‐PAIPD on the surface of a Pt electrode, then the growth of the graft copolymer (PAN‐g‐PANi) in the presence of fresh aniline and acidic solution. The structures of the graft copolymer and PAN‐co‐PAIPD were characterized using UV‐visible, Fourier transform infrared, and 1H and 13C NMR spectroscopies. The thermal properties of PAN‐g‐PANi were studied using thermogravimetric analysis and differential scanning calorimetry. Scanning electron microscopy (SEM) images showed that the morphology of PAN‐g‐PANi copolymer films was homogeneous. Electrical conductivity of the copolymer was studied using the four‐probe method, which gave a conductivity of 4.5 × 10?3 S cm?1 with 51.4% PANi. SEM and electrical conductivity measurements supported the formation of the graft copolymer. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
The sample preparation pathway of solid polymer electrolytes (SPEs ) influences their thermal properties, which in turn governs the ionic conductivity of the materials especially for systems consisting of a crystallizable constituent. Majority of poly(ethylene oxide) (PEO)‐based SPEs with molar masses of PEO well above 104 g mol?1 (where PEO is crystallizable and should reach an asymptote in thermal behaviour) display molar mass dependence of the thermal properties and ionic conductivities in non‐equilibrium conditions, as reported in the literature. In this study, PEO of different viscosity‐molar masses (M η = 3 × 105, 6 × 105, 1 × 106, 4 × 106 g mol?1) and LiClO4 salt (0 to 16.7 wt%) were used. The SPEs were thermally treated under inert atmosphere above the melting temperature of PEO and then cooled down for subsequent isothermal crystallization for sufficient experimental time to develop morphology close to equilibrium conditions. The thermal properties (e.g. glass transition temperature, melting temperature, crystallinity) according to differential scanning calorimetry and the ionic conductivity obtained from impedance spectroscopy at room temperature (σ DC ~ 10?6 S cm?1) demonstrate insignificant variation with respect to the molar mass of PEO at constant salt concentration. These findings are in agreement with the PEO crystalline structures using X‐ray diffraction and ion ? dipole interaction by Fourier transform infrared results. © 2017 Society of Chemical Industry  相似文献   

7.
In this research, influence of incorporating LiClO4 salt on the crystallization, conformation, and ionic conductivity of poly(ethylene oxide) (PEO) in its miscible blend with poly(methyl methacrylate) (PMMA) is studied. Differential scanning calorimetry showed that the incorporation of salt ions into the blend suppresses the crystallinity of PEO. The X‐ray diffraction revealed that the unit‐cell parameters of the crystals are independent of the LiClO4 concentration despite of the existence of ionic interactions between PEO and Li cations. In addition, the complexation of the Li+ ions by oxygen atoms of PEO is investigated via Fourier transform infrared spectroscopy. The conformational changes of PEO segments in the presence of salt ions are studied via Raman spectroscopy. It is found that PEO chains in the blend possess a crown‐ether like conformation because of their particular complexation with the Li+ ions. This coordination of PEO with lithium cations amorphize the PEO and is accounted for suppressed crystallinity of PEO in the presence of salt ions. Finally, electrochemical impedance spectroscopy is used to characterize the ionic conductivity of PEO in the PEO/PMMA/LiClO4 ternary mixture at various temperatures. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
The ionic conductivity of PAN‐TiO2‐LiClO4 as a function of TiO2 concentration and temperature has been reported. The electrolyte samples were prepared by solution casting technique. Their conductivity was measured using the impedance spectroscopy technique. The highest room temperature conductivity of 1.8 × 10?4 S cm?1 was obtained at 7.5 wt % of TiO2 filler. It was observed that the relationship between temperature and conductivity were linear, fitting well in Arrhenius and not in Vogel‐Tamman‐Fulcher equation. The pre‐exponential factor, σ0 and Ea are 1.8 × 10?4 S cm?1 and 0.15 eV, respectively. The conductivity data have been supported by differential scanning calorimeter (DSC) analysis. DSC analysis showed that there was a significant change in glass transition temperature (Tg) with the filler concentration. The SEM micrograph revealed that the TiO2 particles are dispersed in the electrolyte, thus enhancing its conductivity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Hybrid solid polymer electrolytes (HSPE) of high ionic conductivity were prepared using polyethylene oxide (PEO), polyacrylonitrile (PAN), propylene carbonate (PrC), ethylene carbonate (EC), and LiClO4. These electrolyte films were dry, free standing, and dimensionally stable. The HSPE films were characterized by constructing symmetrical cells containing nonblocking lithium electrodes as well as blocking stainless steel electrodes. Studies were made on ionic conductivity, electrochemical reaction, interfacial stability, and morphology of the films using alternating current impedance spectroscopy, infrared spectroscopy, and scanning electron microscopy. The properties of HSPE were compared with the films prepared using (i) PEO, PrC, and LiClO4; and (ii) PAN, PrC, EC, and LiClO4. The specific conductivity of the HSPE films was marginally less. Nevertheless, the dimensional stability was much superior. The interfacial stability of lithium was similar in the three electrolyte films. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2191–2199, 1997  相似文献   

10.
Copolymers of poly(acrylonitrile‐co‐ethyl methacrylate), P(AN‐EMA), with three different EMA content and parent homopolymers were synthesized by emulsion polymerization. The chemical composition of copolymers were identified by FTIR, 1H‐NMR and 13C‐NMR spectroscopy. The thermal properties of copolymers were modified by changing the EMA content in copolymer compositions. Various amounts of LiClO4 salt loaded (PAN‐co‐PEMA) copolymer films were prepared by solution casting. The dielectric properties of these films at different temperatures and frequencies were investigated. It was found that the dielectric constant and ac‐conductivity of copolymer films were strongly influenced by the salt amounts and EMA content in copolymers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
A group of polyethylene oxide (PEO)LiClO4‐Li1.3Al0.3Ti1.7(PO4)3 composite polymer electrolyte (CPE) films was prepared by the solution‐cast method. In each film, EO/Li = 8 and the Li1.3Al0.3Ti1.7(PO4)3 content of 15 wt % were fixed, but the number averaged molecular weight of PEO (Mn) was altered from 5 to 7 × 104 to 106, 2.2–2.7 × 106, 3–4 × 106, 4–5 × 106, and 5.5–6 × 106, respectively. Several techniques including X‐ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electrical impedance spectroscopy (EIS) were used to characterize the CPE films. LiClO4 was found to have a strong tendency to complex with PEO, but Li1.3Al0.3Ti1.7(PO4)3 was rather dispersed in PEO matrix. DSC analysis revealed that the amorphous phase was dominant in the CPE films although the PEOs before‐use was considerably crystalline. SEM study showed smooth and homogeneous morphologies of the films with low molecular weight PEO and a dual phase characteristic for those with high molecular weight PEO. EIS results indicated that the CPE films are all ionic conductor and the conducting behavior obeys Vogel‐Tamman‐Fulcher (VTF) equation. The parameters in VTF equation were obtained and discussed by taking into considerations PEO molecular weights and crystallinities of the CPE films. Of all the films, the one with PEO with the smallest Mn = 5–7 × 104 had the maximum conductivity, i.e., 1.590 × 10?5 S cm?1 at room temperature and 1.886 × 10?3 S cm?1 at 373 K. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4269–4275, 2006  相似文献   

12.
A poly(ethylene oxide)‐block‐poly(dimethylamino ethyl methacrylate) block copolymer (PEO‐b‐PDMAEMA) bearing an amino moiety at the PEO chain end was synthesized by a one‐pot sequential oxyanionic polymerization of ethylene oxide (EO) and dimethylamino ethyl methacrylate (DMAEMA), followed by a coupling reaction between its PEO amino and a biotin derivative. The polymers were charac terized with 1H NMR spectroscopy and gel permeation chromatography. Activated biotin, biotin‐NHS (N‐hydroxysuccinimide), was used to synthesize biotin‐PEO‐PDMAEMA. In aqueous media, the solubility of the copolymer was temperature‐ and pH‐sensitive. The particle size of the micelle formed from functionalized block copolymers was determined by dynamic light scattering. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3552–3558, 2006  相似文献   

13.
Ionic conductivities of salt complexes of polyoxyethylene (PEO)-containing star-shaped block copolymers and copolymers with uniform grafts were measured. The results were compared with the thermal characteristics and crystallinity of the complexes obtained from DSC and WAXD analysis. The conductivity increases with PEO content of the copolymers, more noticeably at PEO contents over 50%. For the complexes of the star-shaped block copolymers of styrene (S) and ethylene oxide (EO), conductivity decreases in the following order of salts: KCNS > NH4CNS > NaCNS. The room temperature conductivity of the KCNS complex with EO/K ratio = 20 can reach a value of 2 × 10?5 S cm?1 at 57% PEO content of the copolymer. The complex with FeCl2 displays a conductivity even higher than that of the NaCNS complex. Addition of γ-butyrolactone reduces the crystallinity and enhances markedly the ionic conductivity. For complexes of the copolymers with uniform PEO grafts the conductivity decreases in the following order of salts: KCNS > LiClO4 > FeCl2. Complexes with LiClO4 exhibit a maximum conductivity at EO/Li = 20. For different kinds of copolymers with uniform PEO grafts, conductivity of the complexes increases in the order: PS-g-PEO < PMMA-g-PEO < polymethyl acrylate-g-PEO.  相似文献   

14.
Polyvinyl formal based polymer electrolyte membranes are prepared via the optimized phase inversion method with poly(ethylene oxide) (PEO) blending. The physical properties of blend membranes and the electrochemical properties of corresponding gel polymer electrolytes (GPEs) are characterized by field emission scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, mechanical strength test, electrolyte uptake test, AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge–discharge test. The comparative study shows that the appearance of PEO obviously enhances the tensile strength of membranes and the ionic conductivity of corresponding GPEs. When the weight ratio of PEO is 30%, the tensile strength of membrane achieves 12.81 MPa, and its GPE shows high ionic conductivity of 2.20 × 10−3 S cm−1, wide electrochemical stable window of 1.9–5.7 V (vs. Li/Li+), and good compatibility with LiFePO4 electrode. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41839.  相似文献   

15.
High molecular weight polyoxyethylene (PEO) was synthesized by using a quaternary catalyst composed of triisobutyl aluminum, phosphoric acid, water, and N,N‐dimethylaniline (DMA). Optimum synthesis conditions and some properties of the product were studied. This catalyst showed high activity and the molecular weight of the polyoxyethylene obtained can approach one million. The activity of polymerization mainly depends upon the composition of catalyst. The optimum composition is as follows: i‐Bu3Al:H3PO4:H2O:DMA = 1 : 0.17 : 0.17 : 0.10–0.15 (molar ratio).The active centers of the catalyst was thus proposed. The high molecular weight PEO synthesized by this catalyst was blended with poly(2‐vinyl pyridine) (PVP) and then doped with LiClO4 and TCNQ to obtain a conductive elastomeric material. Ionic, electronic, and mixed (ionic–electronic) conductivities of blends were investigated. At a Li/EO molar ratio of 0.1 and a TCNQ/VP molar ratio of 0.5, the mixed conductivity of the blend of PEO/PVP/LiCIO4/TCNQ is higher than the sum of ionic conductivity of PEO/PVP/LiCIO4 and electronic conductivity of PEO/PVP/TCNQ, when the weight ratio of PEO to PVP is 6/4 or 5/5. It can reach 4 × 10?6 S/cm at room temperature. Differential scanning calorimetry, thermal gravimetric analysis, and the appearance of the blend showed that both TCNQ and LiClO4 can complex with PEO and PVP, thus enhancing the compatibility between PEO and PVP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Polyacrylonitrile (PAN) based polymer electrolyte membranes complexed with Ammonium hexafluorophosphate (NH4PF6) with different molar concentration are prepared by solution casting method. Increase in the amorphous nature by the addition of Ammonium salt and the formation of polymer-salt complex are confirmed by X ray diffraction studies and infrared spectroscopy respectively. The glass transition temperature is measured for all membranes and it showed a lowest value for the PAN complexed with 20 mol% of NH4PF6. Electrical properties are studied by AC impedance spectroscopy. An ionic conductivity of the order of 10?3 Scm?1 is obtained for the 80 PAN / 20 NH4PF6 polymer electrolyte. Conductivity, dielectric and modulus spectra from the impedance data are analysed to understand the ionic transport mechanism. Transference number measurement is done to study the ionic contribution to the charge transport. A proton battery with the configuration, Zn+ ZnSO4. 7H2O /80 PAN / 20 NH4PF6 / PbO2 +V2O5 has been constructed and its discharge characteristics are studied.  相似文献   

17.
The potential of poly(ethylene oxide) (PEO) and 49% poly(methyl methacrylate) grafted natural rubber (MG49) as a polymer host in solid polymer electrolytes (SPE) was explored for electrochemical applications. PEO–MG49 SPEs with various weight percentages of lithium perchlorate salt (LiClO4) was prepared with the solution casting technique. Characterization by scanning electron microscopy, Fourier transform infrared spectroscopy, and impedance spectroscopy was done to investigate the effect of LiClO4 on the morphological properties, chemical interaction, and ionic conductivity behavior of PEO–MG49. Scanning electron microscopy analysis showed that the surface morphology of the sample underwent a change from rough to smooth with the addition of lithium salts. Infrared analysis showed that the interaction occurred in the polymer host between the oxygen atom from the ether group (C? O? C) and the Li+ cation from doping salts. The ionic conductivity value increased with the addition of salts because of the increase in charge carrier up to the optimum value. The highest ionic conductivity obtained was 8.0 × 10?6 S/cm at 15 wt % LiClO4. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Additives have been proven to be useful in improving electrospinnability and controlling fiber morphology through the modification of solution properties, including the conductivity, viscosity, and surface tension. In this study, the effects of adding small amounts of four different types of ionic liquids [i.e., 1‐butyl‐3‐methylimidazolium chloride (C4MIMCl), 1‐dodecyl‐3‐methylimidazolium chloride (C12MIMCl), 1‐ethyl‐3‐methylimidazolium bromide (C2MIMBr), and 1‐ethyl‐3‐methylimidazolium phosphate (C2MIM)3PO4] on the solution properties, electrospinning process, and characteristics of polyacrylonitrile (PAN) were investigated. The results show that the solution conductivities significantly increased with the addition of different ionic liquids with concentrations varying from 0.1 to 1.0 wt %, and the tendency depended on the structures of the ionic liquids. (C2MIM)3PO4 showed the highest conductivity value; this was followed by C2MIMBr, C4MIMCl, and C12MIMCl. The ionic liquids formed visible crystals; this made the fiber surfaces rough, and some fiber segments underwent partial aggregation. A regular varying tendency between the minimum mean diameter of the PAN/ionic liquid fibers and the structure of the ionic liquid was found. The PAN/N,N‐dimethylformamide (DMF)/(C2MIM)3PO4 solution showed the highest conductivity among the four systems with different ionic liquids added, and the thinnest minimum diameter of the PAN/(C2MIM)3PO4 fibers appeared with a relatively low ionic liquid concentration of 0.25 wt %, whereas the PAN/DMF/C12MIMCl solution had the lowest conductivity, and the minimum mean diameter of PAN/C12MIMCl fibers appeared at a relatively high ionic liquid concentration of 0.8 wt %. Although the conductivity of the PAN/DMF/C2MIMBr solution was higher than that of the PAN/DMF/C4MIMCl solution, the minimum mean diameters of the PAN/C2MIMBr and PAN/C4MIMCl fibers appeared at the same ionic liquid concentration of 0.5 wt % because of the similar ionic activities of C2MIMBr and C4MIMCl. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2359–2368, 2013  相似文献   

19.
The interaction behavior of solid‐state polymer electrolytes composed of poly(ethylene oxide) (PEO)/novolac‐type phenolic resin and lithium perchlorate (LiClO4) was investigated in detail by DSC, FTIR, ac impedance, DEA, solid‐state NMR, and TGA. The hydrogen bonding between the hydroxyl group of phenolic and ether oxygen of the PEO results in higher basicity of the PEO. The higher basicity of the ether group can dissolve the lithium salts more easily and results in a greater fraction of “free” anions and thus higher ionic conductivity. DEA results demonstrated that addition of the phenolic increases the dielectric constant because of the partially negative charge on the ether group induced by the hydrogen bonding interaction between ether oxygen and the hydroxyl group. The study showed that the blend of PEO(100)/LiClO4(25)/phenolic(15) possesses the highest ionic conductivity (1.5 × 10?5 S cm?1) with dimensional stability. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1207–1216, 2004  相似文献   

20.
In this work, we have synthesis nylon‐6/polyethylene oxide (PEO) copolymer system based on feed ratio of PEO (0~ 10 wt %) through condensation polymerization in a pilot scale. The structure of copolymer was confirmed by Fourier transform infrared (FTIR) spectroscopy and verified by 1H nuclear magnetic resonance (1HNMR). The thermal properties were investigated by differential scanning calorimetry (DSC) and indicated both melting temperature (Tm) and cold crystallization temperature (Tc) appearing unapparent decreased while increased PEO content in copolymers. The incorporation of PEO into the nylon‐6 chain reduced its tensile strength, modulus, and heat distortion temperature (HDT). The notched Izod impact strength of and ductility of the copolymers improved significantly as the PEO content was increased. The plasticizing effect was caused by the soft segments from PEO, which increases the mobility of the molecular chain in the copolymers. The results of mechanical tests agree closely with dynamic mechanical analysis (DMA) measurements. A rheological investigation revealed that neat nylon‐6 and its copolymer displayed similar behavior. The crystalline structure was examined by wide‐angle X‐ray diffraction (WAXD). The results demonstrate that the addition of a little PEO altered the crystallization from the α form to the γ form, mainly owing to the breaking parts of the original H‐bonds by the incorporation of ether groups. A mechanism of interaction between the amide and the ether group in nylon‐6/PEO copolymers is proposed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号