首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Some frying by‐products of medium polarity, so‐called medium‐polarity materials (MPM), produced during domestic deep‐frying of French‐fried potatoes in edible vegetable oils, have recently been isolated and linearly correlated to % total polar materials and % polymerized triglycerides. The in vitro oxidation of low‐density lipoproteins in a dose‐dependent manner by MPM has also been reported. In the present study, the MPM constituents were identified after extraction of MPM from the oils, subsequent purification by RP‐HPLC, and GC‐MS analysis. The main constituent of MPM was trans,trans‐2,4‐decadienal, a compound that has previously been reported to be formed during peroxidation of linoleic and arachidonic acid. 2,4‐Decadienal was also quantified in oils and fats used for frying in restaurants in Athens, Greece, by direct injection of oil sample solutions in HPLC. For the most commonly used frying oils, 2,4‐decadienal concentration ranges were 0.3–119.7 mg/kg for sunflower oil, 13.3–92.7 mg/kg for cottonseed oil, 4.1–44.9 mg/kg for palm oil, and 2.0–11.3 mg/kg for vegetable cooking fats. Considering the common catering practices of frying, 2,4‐decadienal was more likely to be found in sunflower oil after deep‐frying of potatoes. Comparing the amounts of this aldehyde found in oils from restaurants to the amounts previously found for domestic frying (up to 30 mg/kg after the 8th successive frying session in sunflower oil), the probability of consuming a level of 2,4‐decadienal in restaurant‐prepared food that is higher than the level in home‐fried food was determined to be approximately one third.  相似文献   

2.
The formation of cis‐9,10‐epoxystearate, trans‐9,10‐epoxystearate, cis‐9,10‐epoxyoleate, cis‐12,13‐epoxyoleate, trans‐9,10‐epoxyoleate, trans‐12,13‐epoxyoleate and the co‐eluting 9‐ and 10‐ketostearates during eight successive pan‐ and deep‐frying sessions of pre‐fried potatoes in five different types of vegetable oils – namely cottonseed oil, sunflower oil, vegetable shortening, palm oil and virgin olive oil – was followed and quantified both in fried oils and in fried potatoes by GC/MS after derivatization to methyl esters. These oxidized fatty acids were present at relatively low concentrations in the fresh oils and pre‐fried potatoes while they increased linearly with frying time, reaching up to 1140.8 µg/g in virgin olive oil (VOO) and 186.9 µg/g in potatoes pan‐fried in VOO after eight pan‐frying sessions, with trans‐9,10‐epoxystearate predominating in all cases. The formation of polymerized triacylglycerols (PTG) was also quantified in frying oils by size exclusion HPLC. Pan‐frying caused higher oxidized fatty acid and PTG formation compared to deep‐frying. Epoxyoleates and PTG concentrations were increased after frying in polyunsaturated oils, while epoxystearate and 9‐ and 10‐ketostearate concentrations were increased after frying in monounsaturated oils. No specific absorption of the oxidized fatty acids by the fried potatoes seems to occur. The dietary intake of oxidized fatty acids and PTG by the consumption of fried potatoes was discussed.  相似文献   

3.
Review of stability measurements for frying oils and fried food flavor   总被引:6,自引:0,他引:6  
Measurements of degradation in frying oils based on oil physical properties and volatile and nonvolatile decomposition products were reviewed. Rapid methods by means of test kits were also considered. Factors that affect the analysis of total polar components (TPC) in frying oils were examined. Relationships between TPC, free fatty acid (FFA) content, Food Oil Sensor readings (FOS), color change (ΔE), oil fry life and fried-food flavor were evaluated. Flavor scores for codfish, fried in fresh and discarded commercial frying oil blends, were dependent upon individuals in the consumer panel (n=77). Part (n=29) of the panel preferred the flavor of fresh fat; others (n=24) didn't; the rest (n=24) had no preference. FFA, FOS and TPC were analyzed in two soybean oils and in palm olein during a four-day period in which french fries were fried. Flavor score and volatiles of potatoes fried on days 1 and 4 in each oil were also determined. TPC, FFA and FOS significantly increased (P<0.05) in all oils during the frying period. TPC and FFA were highest in the used palm olein, and flavor of potatoes fried in palm olein on day 1 was less desirable than those fried in the soybean oils. Potatoes fried in day-1 oils had significantly higher concentrations (P<0.10) of several pyrazines and aldehydes than those fried in day-4 oils. Presented at the 84th Annual Meeting of the American Oil Chemists' Society, Anaheim, California, April 25–29, 1993.  相似文献   

4.
We aimed at investigating oxidative stability and changes in fatty acid and tocopherol composition of extra virgin olive oil (EVOO) in comparison with refined seed oils during short‐term deep‐frying of French fries, and changes in the composition of the French fries deep‐fried in EVOO. EVOO samples from Spain, Brazil, and Portugal, and refined seed oils of soybean and sunflower were studied. Oil samples were used for deep‐frying of French fries at 180 °C, for up to 75 min of successive frying. Tocopherol and fatty acid composition were determined in fresh and spent vegetable oils. Tocopherol, fatty acid, and volatile composition (by SPME–GC–MS) were also determined in French fries deep‐fried in EVOO. Oil oxidation was monitored by peroxide, acid, and p‐anisidine values, and by Rancimat after deep‐frying. Differential scanning calorimetry (DSC) analysis was used as a proxy of the quality of the spent oils. EVOOs presented the lowest degree of oleic and linoleic acids losses, low formation of free fatty acids and carbonyl compounds, and were highly stable after deep‐frying. In addition, oleic acid, tocopherols, and flavor compounds were transferred from EVOO into the French fries. In conclusion, EVOOs were more stable than refined seed oils during short‐term deep‐frying of French fries and also contributed to enhance the nutritional value, and possibly improve the flavor, of the fries prepared in EVOO.  相似文献   

5.
Deep frying can pose hazards due to oil deterioration (oxidation, polymerization, hydrolysis) and harmful components formation such as trans fatty acids, highly oxidized or polymerized constituents of fatty acids and acrylamide. An analysis of safety hazards of the production of the potato chips and french fries, was carried out from potato harvesting until final products packaging according to hazard analysis and critical control point approach focusing mainly on the first three principles. Since frying is considered a critical control point, the critical limits for the frying temperature and for the potential hazards must be controlled in order to ensure fried products safety.  相似文献   

6.
To evaluate the effects of repeated deep‐frying on the trans‐fatty acid (TFA) formation in soybean oils, simultaneous frying experiments were carried out. French fries were prepared using three different types of soybean oil (pressed soybean oil, PSBO; first‐grade solvent extracted soybean oil, FG‐SESBO; and third‐grade solvent extracted soybean oil, TG‐SESBO). French fries were fried intermittently at 180–185°C for a total frying time of 32 h and at an interval time of 30 min. It was found that the initial amount of total TFAs was 0.29 g/100 g, 0.31 g/100 g, and 0.90 g/100 g in PSBO, TG‐SESBO, and FG‐SESBO, respectively. Before the frying started, the C18:1,t‐9, trans‐linoleic acid (TLA), trans‐linolenic acid (TLNA), and total TFA content of the PSBO and TG‐SESBO were significantly lower than in the FG‐SESBO (p<0.05). However, in the frying oil samples, the final concentration of total TFA in the PSBO, TG‐SESBO, and FG‐SESBO were 1.79 ± 0.17 g/100 g, 1.12 ± 0.10 g/100 g, and 1.70 ± 0.07 g/100 g, which was 6.17‐, 3.61‐, and 1.89‐fold higher that in fresh oil, respectively. The highest increasing slopes of C18:1,t‐9, TLA, TLNA, and total TFA were observed in the PSBO. Practical applications : A high intake of TFAs has been shown to lead to an increased risk of coronary heart disease. Plant oils, particularly soybean oil, have been widely used in the food industry in China. Frying is one of the most common methods to cook food. The formation of TFAs during frying has been shown to be closely related to the temperature and duration of the frying process. However, the effects of frying on the formation of TFAs in different soybean oils have not been well studied. In the present study, we demonstrated that increasing the number of frying cycles can cause an intensive increase in the concentration of TFAs in different types of soybean oil, but especially in PSBO.  相似文献   

7.
Changes in chemical, physical and sensory parameters of high‐oleic rapeseed oil (HORO) (NATREON?) during 72 h of deep‐fat frying of potatoes were compared with those of commonly used frying oils, palm olein (PO), high‐oleic sunflower oil (HOSO) and partially hydrogenated rapeseed oil (PHRO). In addition to the sensory evaluation of the oils and the potatoes, the content of polar compounds, oligomer triacylglycerols and free fatty acids, the oxidative stability by Rancimat, the smoke point and the anisidine value were determined. French fries obtained with HORO, PO and HOSO were still suitable for human consumption after 66 h of deep‐fat frying, while French fries fried in PHRO were inedible after 30 h. During the frying period, none of the oils exceeded the limit for the amount of polar compounds, oligomer triacylglycerols and free fatty acids recommended by the German Society of Fat Science (DGF) as criteria for rejection of used frying oils. After 72 h, the smoke point of all oils was below 150 °C, and the amount of tocopherols was reduced to 5 mg/100 g for PHRO and 15 mg/100 g for HORO and HOSO. Remarkable was the decrease of the oxidative stability of HOSO measured by Rancimat. During frying, the oxidative stability of this oil was reduced from 32 h for the fresh oil to below 1 h after 72 h of frying. Only HORO showed still an oxidative stability of more than 2 h. From the results, it can be concluded that the use of HORO for deep‐fat frying is comparable to other commonly used oils.  相似文献   

8.
Some frying by‐products of medium polarity called medium polarity materials (MPMs) were isolated by reversed‐phase high‐performance liquid chromatography (RP‐HPLC) from three different cooking oils used for frying during the domestic successive deep‐frying of potatoes. The cooking oils investigated were virgin olive oil, sunflower oil and a vegetable shortening oil. The relative RP‐HPLC increments of the MPM fractions showed a significant correlation to the total polar material and to the polymerised triacylglycerol increment. They could be used as a new method for the assessment of fried oil deterioration. The capillary gas chromatography/mass spectrometry analysis revealed two main groups of peaks for the MPM fractions, which are almost identical in the three examined oils. This indicates that the MPM constituents rather result from the triglycerides than from minor constituents of the oils.  相似文献   

9.
Moisture loss and oil adsorption kinetics, structural properties (apparent density, true density, specific volume and internal porosity), color changes and viscoelastic behavior (compression tests, crispness) were investigated during deep fat frying of french fries. The effect of frying conditions (oil temperature, sample thickness and oil type), drying pretreatment and osmotic dehydration pretreatment on the above properties was also examined. The results showed that oil temperature and thickness of potato strips have a significant effect on oil uptake, moisture loss and color parameters of french fries, while the use of hydrogenated oil in the frying medium does not affect these properties. The porosity of french fries increases with oil temperature increases and sample thickness and it is higher for products fried with hydrogenated oil. Maximum stress and maximum strain increase during frying, while crispness of potato strips is higher for hydrogenated oil, and lower for refined oil. Air drying and osmotic pretreatment increase porosity of fried potatoes but decrease their oil and moisture content. A negative effect on color development with drying time was also observed. Pre-fry drying as well as osmotic pre-treatment increases the maximum stress and maximum strain of french fries during frying. Air drying pre-treatment increases the crispness of potato strips while osmotic pre-treatment does not affect it, with the exception of sugar solutions.  相似文献   

10.
The paper describes the effect of different factors influencing the concentration of acrylamide in deep‐fat fried potato products. In French fries the amount of acrylamide increased with the temperature as well as the frying time, especially at temperatures higher than 175 °C. The increase of acrylamide with the time followed a linear function, whereas a non‐linear relationship was given with the temperature of frying. As a result, a reduction of the processing temperature led to lower concentrations of acrylamide in the product. Both, oil type and silicon oil as antifoaming agents had no significant influence upon the acrylamide concentration in the food. The variety of potatoes had a strong effect on the acrylamide concentration in potato crisps and French fries. The investigation showed a significant correlation (r = 0.73) between the concentration of acrylamide and reducing sugars in raw potatoes, and no significant correlation with the asparagine concentration. The storage temperature of the raw material had an effect on the acrylamide concentration in the product. Lowering of the storage temperature from 8 to 4 °C resulted in an increase of the concentration of reducing sugars in the raw material, which led to a higher potential of acrylamide formation in the products. The experiments showed that the acrylamide concentration of French fries depended on the surface‐to‐volume ratio (SVR).  相似文献   

11.
Formation of toxic alkylbenzenes, total polar compounds (%TPC) and degradation of tocochromanol are monitored. Analyses of the oil extracted from fried potatoes confirm the trend observed in the frying oil. The fresh oil has a TPC content of 3%, which increases with the frying time, exceeding the acceptable value (25%) after about 25 h for deep‐frying and 1.5 h for pan‐frying. During deep‐frying, total tocochromanol decreases to about half (25 mg per 100 g) of the initial value, pan‐frying shows faster, degradation (complete after 1.5 h). Toluene concentration increases with the frying time reaching a maximum, and afterwards gradually decreases. Except for butylbenzene during pan‐frying, pentylbenzene and butylbenzene concentration, increase with the frying time, but remain much lower than toluene. Practical Applications: This is the first systematic work comparing alkylbenzenes evolution under different frying conditions. Different from previous works, frying experiments are carried out following the indication of many European countries that recommend using temperature lower than 180 °C. The amount of alkylbenzenes assumed through a standard portion of fried potatoes (200 g) is assessed, which is relevant for evaluating dietary exposure to these contaminants.  相似文献   

12.
2-tert-Butyl-1,4-benzoquinone (TBBQ), the main oxidation product of tert-butyl-hydroquinone (TBHQ) during frying, is cytotoxic and its residual levels in frying oils and foods are unknown. In this study, TBBQ residues have been evaluated during the preparation of french fries. Results showed that frying at 140 °C resulted in the highest TBBQ peak concentration (48.42 mg kg−1) compared with frying at 190 or 170 °C. This unexpected finding can be attributed to more extensive hydrolytic reaction when frying at the lower temperature, generating more peroxyl radicals. TBBQ concentrations proved to be independent of the oil type among various unsaturated oils. However, higher TBBQ levels were observed in saturated palm oil and crude soybean oil than in unsaturated oil or refined oil. Continuous frying leads to the accumulation of a large amount of TBBQ in fried food. After frying 1–5 batches, TBBQ levels in both the frying oil and fries were above 10 mg kg−1, exceeding its critical cytotoxic concentration (IC50 value of 10.71 mg kg−1 for RAW 246.7 cells in our previous study), warranting concern with respect to the safety of fried food. FTIR has been utilized as an effective tool for visually monitoring the degree of oxidation in the frying medium with respect to its hydrogen peroxide level, which contributes to the increased level of TBBQ derived from TBHQ therein.  相似文献   

13.
《Drying Technology》2013,31(5):879-935
Moisture loss and oil adsorption kinetics, structural properties (apparent density, true density, specific volume and internal porosity), color changes and viscoelastic behavior (compression tests, crispness) were investigated during deep fat frying of french fries. The effect of frying conditions (oil temperature, sample thickness and oil type), drying pretreatment and osmotic dehydration pretreatment on the above properties was also examined. The results showed that oil temperature and thickness of potato strips have a significant effect on oil uptake, moisture loss and color parameters of french fries, while the use of hydrogenated oil in the frying medium does not affect these properties. The porosity of french fries increases with oil temperature increases and sample thickness and it is higher for products fried with hydrogenated oil. Maximum stress and maximum strain increase during frying, while crispness of potato strips is higher for hydrogenated oil, and lower for refined oil. Air drying and osmotic pretreatment increase porosity of fried potatoes but decrease their oil and moisture content. A negative effect on color development with drying time was also observed. Pre-fry drying as well as osmotic pre-treatment increases the maximum stress and maximum strain of french fries during frying. Air drying pre-treatment increases the crispness of potato strips while osmotic pre-treatment does not affect it, with the exception of sugar solutions.  相似文献   

14.
The effect of two after-cooking darkening inhibitors, sodium acid pyrophosphate (SAPP) and calcium acetate (CaAc), and their combined effect on frying oil stability and quality of french fries produced were evaluated over a period of 72 h. Samples of frying oil and par-fried french fries were taken at 3-h intervals through each experiment and analyzed for selected chemical and physical parameters. As the frying time increased, all the oil samples contained increased amounts of deterioration products. The color index and free fatty acid (FFA) values were highly correlated with frying time. There were no significant effects on oil properties in terms of FFA until 9 h of frying among the 4 pretreatments. However, from 12 to 72 h of frying, oil used to fry potatoes treated with SAPP contained less FFA than oils exposed to CaAc alone or in combination with SAPP. The fat content of par-fried french fries was approximately 0.11 g/g dry matter and remained relatively constant during extended frying. After-cooking darkening of par-fried french fries and final color of the fries were affected by the pretreatment, but not by the frying time.  相似文献   

15.
Acrylamide and 4‐hydroxynonenal (HNE) are among the most detrimental compounds formed during high temperature processing of food. The effect of carbon dioxide blanketing (CDB) on the formation and accumulation in food of these compounds during deep‐fat frying was investigated. French fries were fried for 7 h daily and for 7 days in canola oil at 185 ± 5°C without and with CO2 protection. The amount of acrylamide and HNE accumulated in the French fries were analyzed. Compared to standard frying conditions (SFC), frying under CDB reduced the amount of HNE by 62%. On the 3rd day of frying, the amount of acrylamide in fries fried under SFC was 3.3 times higher compared to frying with CO2 protection. Frying with carbon dioxide protection is an effective and practical way to impede formation of toxic components during deep‐fat frying. To assess formation of HNE a simple, sensitive and reliable procedure for HNE analysis in frying oils and fried products was developed and evaluated. Practical applications : The toxicity of HNE and acrylamide, coupled with the increasing consumption of fried foods necessitates that measures be taken to reduce their formation and subsequent accumulation in fried foods. The frying method proposed in this study is very effective and requires only a simple modification to the fryer. Developed rapid and simple procedure for HNE analysis allows more accurate quantification.  相似文献   

16.
A reliable and sensitive gas chromatography‐mass spectrometry method was developed for the determination of acrylamide, a toxic compound recently discovered in baked, fried or grilled food. Satisfactory results for repeatability and recoveries were obtained by this method. The limit of detection for acrylamide was 15 μg/kg food and recoveries were between 95 to 103%. The improved method was then employed to study the influence of heat, heating time and type of frying oil on the formation of acrylamide during the deep frying of French fries. In this matrix acrylamide formation was promoted by heating in a time‐dependent manner. It appeared that acrylamide arose, when reducing sugars, dimethylpolysiloxane or partial glycerides were present. Three mechanisms of formation are discussed in this context. Although the mechanistic complexity increases dramatically in the presence of various food components, some recommendations can be given to minimize acrylamide levels in deep fried products.  相似文献   

17.
Frying of frozen foods has become popular because it considerably reduces cooking time. Polymers and cyclic fatty acid monomers (CFAM) formed during frying are potentially toxic and therefore their production should be minimized. Twenty discontinuous fryings of different frozen foods were carried out over ten consecutive days, in sunflower oil (SO) and in high‐oleic acid sunflower oil (HOSO), by adding fresh oil after each frying to bring the volume of the fryer oil back to 3 L. CFAM methyl ester derivates were hydrogenated, isolated, concentrated and quantified by HPLC using a reverse‐phase column, followed by gas chromatography. After 20 fryings, significantly higher contents of polar material, polymers and CFAM (all p <0.001) were found in SO than in HOSO. Bicyclic compound formation was four times higher in SO (p <0.001). The fat from the fried potatoes presented a polymer content very similar to that of their corresponding oils. The 100‐g rations of the SO‐fried potatoes from the 20th frying supply 49 or 15%, respectively, more polymers and CFAM and 1 mg more bicyclic fatty acids than the 100‐g rations of HOSO‐fried potatoes. Because digestion and absorption of polar material, polymers and CFAM occur, the data clearly show the advantageousness and advisability of frying with HOSO rather than SO.  相似文献   

18.
Fatty acid components of fried foods and fats used for frying   总被引:1,自引:0,他引:1  
Oxidation of fat is accelerated at temp as high as those used for frying. The extent of this oxida-tion has been studied by frying two kinds of foods (chicken or potatoes) in cottonseed oil and in lard. Fat samples, taken prior to use and follow-ing 5 and 10 hr of frying (both for chicken and potatoes) were esterified. Subsequent quantita-tive assays of methyl esters by gas chromatogra-phy showed that the linoleic acid content had decreased from 57-49% after cottonseed oil had been used 10 hr for frying. This decrease was present regardless of whether chicken or potatoes were fried. There was no change in the linoleic acid content of lard after chicken was fried, but a decrease from 11.3-5.8% was noted when pota-toes were fried for 10 hr. The fatty acid content of the fat extracted from the potatoes and the fat used to fry them, was the same when sampled at 5 hr. However, at the end of the 10-hr frying period, fat ex-tracted from the potatoes had a lower linoleic acid content than fat used to fry them. Results were the same for both cottonseed oil and lard. Fatty acid components of the fat extracted from the chicken seemed to be affected as much by the fatty acid composition of the chicken itself as by fat used for frying. Whether the chicken was cooked in fat used 5 or 10 hr made little differ-ence. Journal Paper No. 1130, Mississippi Agricultural Experiment Station. A portion of the work in this paper is taken from a thesis sub-mitted in partial fulfillment of the requirements for the Master of Sci-ence degree at Mississippi State University in January, 1963.  相似文献   

19.
The aim of this study was to compare thermal degradation of oil, especially the composition of the polymer in a polar and nonpolar fraction of oil, used for repeated frying of fast and traditional French fries. The French fries were fried using the partially hydrogenated rapeseed oil. Fast French fries were characterized by a half shorter frying time compared to traditional ones. The frying process was done at 170 °C ± 5 °C in 5‐l electric fryers and carried out in 15‐min cycles for 48 hours. The content of thermal decomposition of triacylglycerol (TAG) in both fractions of oil was analyzed by high‐performance size‐exclusion chromatography (HPSEC). In all analyzed samples, thermal decomposition products were found. However, the composition of a polar and nonpolar fraction of oil was not the same. In a nonpolar fraction, only the monomers and hydrolysis products of TAG were observed. In a polar fraction, dimers, trimers, and oligomers of TAG were also found. The shorter time of frying the fast French fries resulted in a lower total and individual polymers content in all steps of analysis compared to the oil used for frying the traditional French fries.  相似文献   

20.
Effects of fatty acid composition of frying oils on intensities of fried-food flavor and off-flavors in potato chips and french-fried potatoes were determined. Commercially processed cottonseed oil (CSO) and high-oleic sunflower oil (HOSUN) were blended to produce oils with 12 to 55% linoleic acid and 16 to 78% oleic acid. Analytical sensory panels evaluated french-fried potatoes and pilot plant-processed potato chips. Initially, both foods prepared in CSO (16% oleic/55% linoleic acid) had the highest intensities of fried-food flavor; however, this positive flavor decreased with decreasing levels of linoleic acid. 2,4-Decadienal in potato chips also decreased with decreasing linoleic acid in the oils. Frying oil stability, measured by total polar compounds (TPC), and oxidative stability of potato chips, measured by volatile compounds, showed that HOSUN (78% oleic acid) produced the lowest levels of TPC and the lowest levels of hexanal and pentanal, indicating greater frying oil stability and oxidative stability of the food. However, fresh potato chips fried in HOSUN had the lowest intensities of fried-food flavor and lowest overall flavor quality. Fried-food flavor intensity was the best indicator of overall flavor quality in fresh potato chips. Volatile compounds, TPC, and oxidative stability index directly varied with increasing oleic acid, and were therefore not directly indicative of flavor quality. No oil analysis predicted flavor stability of aged potato chips. Compositions of 16 to 42% oleic acid and 37 to 55% linoleic acid produced fresh fried-food with moderate fried food flavor intensity, good overall flavor quality, and low to moderate TPC levels (chips only). However, in aged food or food fried in deteriorated oil, compositions of 42 to 63% oleic and 23 to 37% linoleic provided the best flavor stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号