首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.

Abstract  

The precursor particles for γ-Ga2O3–Al2O3 solid solutions were prepared by the coprecipitation method from aqueous solutions of Ga(NO3)3 and Al(NO3)3 with (NH4)2CO3 as a precipitant. The γ-Ga2O3–Al2O3 solid solutions were obtained by calcination of the precursor at 700 °C. In this paper, the performance of the catalysts treated with NH3 was investigated for the selective catalytic reduction (SCR) of NO with methane as a reducing agent, and it was found that γ-Ga2O3–Al2O3 catalysts treated with NH3 and subsequently annealed in air showed higher activities than the γ-Ga2O3–Al2O3 catalysts without NH3 treatment. NH3 treatment of the catalyst caused partial rearrangement of Ga3+ and Al3+ ions and increased the population of tetrahedral Ga3+ ions in the defective spinel structure.  相似文献   

2.
The effect of the hydroisomerization conditions of the benzene-containing fraction of catalytic reforming gasoline on the yield and composition of products is studied on Pt/B2O3–Al2O3 and Pt/WO3–Al2O3 catalysts. These catalysts allow benzene to be completely removed from the raw material. At the same time, the greatest yields of liquid products are obtained with minimal losses of the octane number at 2 MPa, a mass feedstock hourly space velocity (MFHSV) of 2 h?1, and 325°C: 96.3 and 95.4 wt % on Pt/B2O3–Al2O3 and Pt/WO3–Al2O3 catalysts, respectively. The activity of the catalysts is maintained for 100 h during their operation.  相似文献   

3.
It is shown that the phase heterogeneity of SiO2–Na2O–Al2O3 glass has a liquation and crystallization nature, the balance between which is determined by the conditions of their synthesis. An increase in the aluminum oxide content decreases the number of liquation and crystallization sites, and also the linear sizes of the crystalline formations without eliminating the phase separation due to the liquation. The area of metastable immiscibility in the SiO2–Na2O–Al2O3 system, which is determined by scanning electron microscopy, is probably wider than the area detected by the optical methods.  相似文献   

4.
5.
Some photon interaction parameters such as mass attenuation coefficient, effective atomic number, half value layer, mean free path and electron density for 15ZnO–(17.5–x)Al2O3xFe2O3–67.5P2O5 glass system (x = 0, 7.5, 12.5, 17.5) and 15ZnO–(25–x)Al2O3xFe2O3–60P2O5 glass system (x = 0, 25) have been investigated in the photon energy range of 1 keV to 100 GeV. It has been observed that all the photon interaction parameters for the selected glass systems vary with the photon energy. Among the selected glass systems, the sample 15ZnO–25Fe2O3–60P2O5 glass system shows maximum values for mass attenuation coefficients, effective atomic numbers, electron densities and minimum values for mean free path and half value layer in the entire energy grid.  相似文献   

6.
The results of the studies of the process of fabricating ceramic filtration membranes in the system ZrO2(Y2O3)–Al2O3 are presented. The phase compositions of the precursor powders and sintered ceramics have been investigated and their porous structures have been determined. Two stages of the implementation of the technology were demonstrated: fabrication of substrates with an open porosity ranging from 20 to 47% and pore sizes in the 100–300 nm range, as well as the deposition of nanocrystalline aluminum oxide layers on them. It has been established that the pore size distribution in the membrane layer of α-Al2O3 is unimodal (from 30 to 100 nm).  相似文献   

7.
Oxide based optical glass materials has important potential material in many applications from fiber optic to sensor due to the high transparency and amourphous structures. The objective of this study is to synthesize the novel optical glass materials based on the bismuth and aluminum contents to be able to determine the physical, chemical and mechanical properties by considering the systematic experimental steps. In this study, Bi2O3–Al2O3 based tellurite optical glasses have been prepared by using conventional melt quenching method as a function of the both Bi2O3 and Al2O3 compositions. There is a strong interactions between the glass former and modifier ions that might effect on the structure and mechanical properties. During the experimental steps, thermal, structural and mechanical properties of the prepared glass materials have been determined considering the DTA/DSC, FT-IR spectroscopy, SEM and Vicker’s hardness techniques, respectively. Thermal parameters, like glass transition, Tg, onset, Tx, crystallization, Tp, and melting, Tm, temperatures were obtained by using DTA scan.  相似文献   

8.
Vapor–liquid equilibria of binary components of the BrCF2COOCH3–CF3COOH–BrCF2COOH–CF3COOCH3 quaternary system have been studied experimentally at constant pressure. The experiments have been carried out on a modified Sventoslavskii ebulliometer. Using the Aspen Plus software package, the appropriate models have been selected and the vapor–liquid equilibria for six binary systems have been simulated.  相似文献   

9.
10.
The phase relationships in the Na2ZnP2O7–LiKZnP2O7 system are studied. They are represented by a mixture of the starting components in the subsolidus region. The eutectic was found at a temperature of 640°C and composition of 0.5LiKZnP2O7. The phase formation of this system is compared with the previously studied NaKZnP2O7–LiKZnP2O7 system. It is shown that a structural factor affects the geometry of the state diagrams.  相似文献   

11.
The results of the studies of the conditions of the liquid-phase synthesis of highly dispersed xerogels with a low degree of agglomeration and precursor nanopowders (~10–12 nm) based on zirconium dioxide in the ZrO2–HfO2–Y2O3(CeO2) system are presented. The thermal decomposition of xerogels and formation of crystalline solid solutions with the structure of fluorite are investigated. The optimal conditions for the solidification of nanodispersed powders for fabricating compact ceramics based on solid solutions of ZrO2 and the physical–chemical properties of these ceramics are studied.  相似文献   

12.
Vitrification in the Ga2S3–GeS2–PbF2 system is considered. The physicochemical properties of glasses, such as density, microhardness, electroconductivity, refraction index, and transmission percentage of specimens in visible and IR ranges of spectrum are studied; differential thermal analysis is carried out; and Raman and electron paramagnetic resonance spectra are investigated.  相似文献   

13.

Abstract  

The Rh/α-Al2O3 catalyst was modified by CeO2 in order to improve the thermal stability and the carbon deposition resistance during the CO2 reforming of methane The carbon formation was determined by TPO, TEM and Raman spectroscopy. Characterization results showed that the incorporation of Ce in the support inhibits the carbon deposition, increasing the useful life and the stability of the Rh base catalysts.  相似文献   

14.
A series of Bi2O3/Bi2O4 composites were prepared by calcining raw materials with different NaBiO3/KOH mass ratios. The Bi2O3/Bi2O4 photocatalysts were characterized by the various measurements and their photocatalytic performance was assessed by degradation of 17α-ethinyl estradiol (EE2). The Bi2O3/Bi2O4 photocatalysts have wider visible light absorption and lower fluorescence emission intensity than the commercial Bi2O3. So, they displayed superior performance in the degradation of EE2. After the adsorption equilibrium of EE2 was reached, the degradation efficiency of Bi2O3/Bi2O4 for EE2 can reach a maximum value of ~?100% in 12 min under the visible-light illumination. Degradation analysis results indicated that both holes (h+) and superoxide radical (·O2?) can affect the degradation efficiency of EE2.

Graphical Abstract

  相似文献   

15.
Monometallic copper and bimetallic palladium-copper catalysts supported on ZnO–Al2O3 and ZrO2–Al2O3 were prepared by conventional impregnation method and tested in methanol synthesis reaction under elevated pressure (3.5 MPa) in gradientless reactor at 220°C. The physicochemical properties of prepared catalytic systems were studied using BET, X-ray, TPR-H2, TPD-NH3 techniques. The promotion effect of palladium on catalytic activity and selectivity of copper supported catalyst in methanol synthesis reaction was proven. The highest activity of this system is explained by the Pd–Cu alloy formation.  相似文献   

16.
A highly dispersive powder with a (ZrO2)0.92(Y2O3)0.03(Gd2O3)0.03(MgO)0.02 composition and specific surface area of 150 m2/g has been synthesized via a method of coprecipitation of hydroxides with the subsequent cryochemical treatment of the gel. Nanoceramics based on the cubic modification of zirconium dioxide with the grain size of ~40–45 nm have been obtained. The temperature dependence of the specific electrical conductance of the nanoceramics within a temperature range of 350–870°C in air has been studied, and the ratio of the ionic and electronic parts of the conductance has been determined. Recommendations for the use of the obtained oxide nanocomposite as an electrolyte for a high-temperature fuel cell have been given.  相似文献   

17.
The thermal behavior of ammonioborite (NH4)3[B15O20(OH)8] · 4H2O is investigated using thermal X-ray diffraction, differential thermal analysis (DTA) in air and vacuum, and thermogravimetry. It is shown that the decomposition of the mineral (dehydration, dehydroxylation, deammoniation) proceeds in several stages, and the dehydration is accompanied by the amorphization. The thermal expansion of ammonioborite is sharply anisotropic. As in the case of other hydrous pentaborates, the thermal expansion is maximum in the direction in which pentaborate groups alternate with ammonium cations.  相似文献   

18.
A study has been made on the effects of the amount of silicon nitride and graphite on the physicomechanical properties of Al2O3–Si3N4–C composites for lining purposes. Adding 2.5–5.0 wt.% silicon nitride and 0.5 wt.% reactive alumina improves the properties, raises their apparent density, and increases the mechanical strength, while reducing the open porosity. Optimized compositions have been determined for refractory materials of Al2O3–Si3N4–C composition, and it has been found that to attain the higher values of physicomechanical properties the amount of graphite should constitute 5–10 wt.%.  相似文献   

19.
With the aim of achieving a high-performance 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 material, a series of 0.5Li2MnO3·0.5LiMn x Ni y Fe(1−xy)O2 (0.3 ≤ x ≤ 0.5, 0.4 ≤ y ≤ 0.5) samples with low Fe content was synthesized via coprecipitation of carbonates. Its crystal structure and electrochemical performance were characterized by means of powder X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, galvanostatic charge/discharge testing, cyclic voltammetry, and electrochemical impedance spectra. Rietveld refinements with a model integrating R [`3] \overline{3} m and Fm [`3] \overline{3} m indicate that a low concentration of Fe incorporated in 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 decrease a disordered cubic domain of the composite structure. The preferential distribution of Fe in cubic rock-salt contributes to an unimaginable decrease of c-axis parameter of the predominant layered structure as the Fe content increases. Moreover, including Fe as a dopant can kinetically improve crystallization and also change the ratio of Mn3+/Mn4+ and Ni3+/Ni2+. As a result, 0.5Li2MnO3·0.5LiMn0.4Ni0.5Fe0.1O2 exhibits lower Warburg impedance and higher reversible capacity than the undoped material.  相似文献   

20.
Sm3+-doped SrO–Al2O3–SiO2 glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated. The results indicate that the crystal phase in this system is monocelsian (SrAl2Si2O8). Under the excitation with blue light (475 nm) the Sm3+-doped SrO–Al2O3–SiO2 glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm, which can be assigned to the 4G5/26HJ/2 (J = 5, 7, 9, 11) electron transitions in Sm3+ ions, respectively. With the increase of nucleation/crystallization temperature, the crystallite part rises from 66 to 79%. Besides, by increasing crystallization temperature or concentration of Sm3+, the samples emission located at 565, 605 and 650 nm is intensified significantly. We envision that, by fine controlling and combining of these three (green, orange and red) lights in an appropriate proportion, the Sm3+-doped glass-ceramics are promising luminescence materials for white light-emitting diodes devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号