首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal history of the Jiaodong region and adjacent provinces(Shandong and northern Jiangsu) have been extensively studied,particularly by apatite fission track(AFT) dating.However,the AFT ages from surface outcrops range broadly and do not show an apparent relationship between age and elevation.This work provides a multiple low temperature thermochronological dataset including zircon and apatite(U-Th)/He ages(ZHe and AHe),and AFT ages from a 1000-m-deep borehole at the Jiaojia goldneld in the northwest of Jiaodong Peninsula.ZHe,AFT and AHe ages range from-100-70,-85-50and-65-50 Ma,respectively.These data conform to the principles of age vs.closure temperature and age vs.elevation and thus can be employed to estimate the exhumation history.Based on the density histogram of fission track length calculation,thermal history modeling,and previously published AFT ages from the Chinese Continental Science Drill program,this work concludes that compared to the AFT ages from surface outcrops,the low temperature thermochronological ages from the boreholes show a better relationship between age,elevation and closure temperature,and the age becomes younger with increasing depth.In addition,the exhumation history in the Jiaodong and adjacent areas can be divided into two distinct stages:a short,rapid tectonic exhumation(~100-95 Ma) and a long,slow exhumation since 95 Ma.The rate and amount of tectonic exhumation since 95 Ma are inferred as ~30 m Ma~(-1) and ~3 km,respectively.  相似文献   

2.
长波长、低起伏度大凉山构造带新生代隆升剥露与建造过程是解译青藏高原东向扩展过程的关键核心地区之一.本文基于大凉山构造带喜德剖面和沐川剖面9件样品的多封闭系统低温热年代学年龄(即磷灰石(U-Th)/He(AHe)、磷灰石裂变径迹(AFT)和锆石(U-Th)/He(ZHe))定年,揭示出多封闭系统热年代学年龄与古岩性柱深度具有明显的正相关性,即伴随古岩性柱深度增大,多封闭系统热年代学年龄明显减小.喜徳剖面多封闭系统低温热年代学AHe、AFT和ZHe年龄值分别为7—9Ma、14—22Ma和25—38Ma;沐川剖面多封闭系统低温热年代学AHe和AFT年龄值分别为10—26Ma、23—85Ma,ZHe年龄值为未完全退火年龄.多封闭系统热年代学和QTQt热史模拟揭示,大凉山构造带喜徳和沐川剖面岩性柱所有样品都经历大致相似的三阶段热演化过程,尤其是晚新生代快速隆升剥露阶段(30—20 Ma以来),其平均剥露速率分别为~0.15mm·a-1和~0.20mm·a-1,抬升剥露量分别为~3.0km和~1.5km.结合区域低温热年代学特征的大凉山构造带地表隆升动力学模型,揭示出重力均衡作用下地壳缩短与剥露作用(即构造隆升剥露机制)控制形成了现今大凉山造山带长波长、低起伏和高海拔地貌建造过程.  相似文献   

3.
本文通过背斜褶皱变形与低温热年代学年龄(磷灰石和锆石(U-Th)/He、磷灰石裂变径迹)端元模型研究,约束低起伏度、低斜率地貌特征的四川盆地南部地区新生代隆升剥露过程.四川盆地南部沐川和桑木场背斜地区新生代渐新世-中新世发生了相似的快速隆升剥露过程(速率为~0.1 mm/a、现今地表剥蚀厚度1.0~2.0 km),反映出盆地克拉通基底对区域均一性快速抬升冷却过程的控制作用.川南沐川地区磷灰石(U-Th)/He年龄值为~10-28.6 Ma, 样品年龄与古深度具有明显的线性关系,揭示新生代~10-30 Ma以速率为0.12±0.02 mm/a的稳态隆升剥露过程.桑木场背斜地区磷灰石裂变径迹年龄为~36-52 Ma,古深度空间上样品AFT年龄变化不明显(~50 Ma)、且具有相似的径迹长度(~12.0 μm).磷灰石裂变径迹热演化史模拟表明桑木场地区经历三个阶段热演化过程:埋深增温阶段(~80 Ma以前)、缓慢抬升冷却阶段(80-20 Ma)和快速隆升剥露阶段(~20 Ma-现今),新生代隆升剥露速率大致分别为~0.025 mm/a和~0.1 mm/a.新生代青藏高原大规模地壳物质东向运动与四川盆地克拉通基底挤压,受板缘边界主断裂带差异性构造特征控制造就了青藏高原东缘不同的边界地貌特征.  相似文献   

4.
Combined apatite fission track(AFT)and(U-Th)/He(AHe)thermochronometries can be of great value for investigating the history of exhumation of orogenic belts.We evaluate the results of such a combined approach through the study on rock samples collected from the Baluntai section in the Tianshan Mountains,northwestern China.Our results show that AFT ages range from~60 to 40 Ma and AHe ages span~40–10 Ma.Based on the strict thermochronological constraints imposed by AHe ages,forward modeling of data derived from AFT analyses provides a well-constrained Cenozoic thermal history.The modeled results reveal a history of relatively slow exhumation during the early Cenozoic times followed by a significantly accelerated exhumation process since the early Miocene with the rate increasing from<30 m/Myr to>100 m/Myr,which is consistent with the inference from the exhumation rates calculated based on both AFT and AHe age data by age-closure temperature and mineral pair methods.Further accelerated exhumation since the late Miocene is recorded by an AHe age(~11 Ma)from the bottom of the Baluntai section.Together with the previous low-temperature thermochronological data from the other parts of the Tianshan Mountains,the rapid exhumation since the early Miocene is regarded as an important exhumation process likely prevailing within the whole range.  相似文献   

5.
青藏高原东缘作为高原生长的东边界,其新生代以来隆升剥露与扩展模式备受关注.高原内部平缓的地貌和边界构造带不显著的缩短变形被认为是下地壳流作用的重要证据.然而近年来,越来越多的低温热年代学研究结果表明,中-晚新生代以来跨不同断裂带存在显著的差异性隆升剥露,指示了断裂体系在青藏高原东缘构造变形与演化中的重要作用.本文系统收集区域内现有不同封闭温度体系的低温热年代学数据,综合分析结果表明青藏高原东缘隆升剥露及生长扩展与整个高原抬升具有准同步性.最为广泛和显著的剥露主要发生在~30 Ma以来,且高原东缘的最大侵蚀量区受控于断裂活动,快速侵蚀带的空间分布与鲜水河断裂带相一致.在区域尺度上,现有数据所揭示的剥露事件启动、持续时间及速率的显著差异性揭示了断层活动对青藏高原东缘地表剥露过程的控制作用.本文提出青藏高原向东扩展是多阶段、非均匀过程,新生代以来不同断裂带在青藏高原向东扩展过程中起到了至关重要的作用,不支持"下地壳流假说"强调的"东缘上地壳变形不显著"的认识.  相似文献   

6.
依据钻孔系统稳态测温、静井温度资料与实测热导率数据分析了柴达木盆地地温场分布特征,建立了柴达木盆地热导率柱,新增了17个大地热流数据.柴达木盆地现今地温梯度介于17.1~38.6℃·km-1,平均为28.6±4.6℃·km-1,大地热流介于32.9~70.4mW·m-2,平均55.1±7.9mW·m-2.盆地不同构造单元地温场存在差异,昆北逆冲带、一里坪坳陷属于"高温区",祁南逆冲带属于"中温区",三湖坳陷、德令哈坳陷及欧龙布鲁克隆起属于"低温区",盆地现今地温场分布特征受控于地壳深部结构、盆地构造等因素.以现今地温场为基础,采用磷灰石、锆石裂变径迹年龄分布特征定性分析与径迹长度分布数据定量模拟相结合,研究了柴达木盆地晚古生代以来的沉积埋藏、抬升剥蚀和热演化史,并结合区域构造背景,对柴达木盆地构造演化过程进行了探讨,研究表明柴达木盆地晚古生代以来经历了六期(254.0—199 Ma,177—148.6 Ma,87—62 Ma,41.1—33.6 Ma,9.6—7.1 Ma,2.9—1.8 Ma)构造运动,六期构造事件与研究区构造演化的动力学背景相吻合.其中白垩纪末期(87—62 Ma)的构造事件导致了柴达木盆地东部隆升并遭受剥蚀,欧龙布鲁克隆起形成雏形,柴达木盆地北缘在弱挤压环境下形成坳陷盆地;中新世末的两期构造事件(9.6—7.1 Ma和2.9—1.8 Ma)使柴达木盆地遭受强烈挤压,盆地快速隆升,构造变形强烈,基本形成现今的构造面貌.  相似文献   

7.
江南隆起位于扬子与华夏地块的碰撞汇聚带,是研究华南大地构造演化的关键地质单元.本文采用磷灰石裂变径迹及(U-Th-Sm)/He年龄分布特征定性分析与径迹长度分布数据定量模拟相结合,主要研究了幕阜山岩体新生代的隆升与剥蚀过程,并在此基础上结合区域构造背景, 对其构造-热演化之间的关系进行了探讨.自晚白垩世持续隆升以来,幕阜山岩体经历的平均剥蚀厚度约4800 m.在不同岩体间,隆升过程及幅度存在差异,空间上具有非均匀性.热史结果显示幕阜山岩体经历了3期剥蚀, 其中两期快速剥蚀分别发生在晚白垩世-古近纪(80~50 Ma)和10 Ma以来,而这之间为一期缓慢剥蚀过程.研究区古近纪的快速剥蚀反映了中-下扬子喜山期大规模伸展断陷作用造成的肩部块体快速剥蚀事件; 约10 Ma以来的快速剥蚀是对太平洋板块向西运动的响应.幕阜山岩体自燕山晚期以来的隆升剥蚀作用具有良好的盆地沉积响应, 三期隆升剥蚀事件与研究区构造演化的动力学背景相吻合.  相似文献   

8.
合肥盆地构造热演化的裂变径迹证据   总被引:12,自引:0,他引:12       下载免费PDF全文
运用裂变径迹分析方法,探讨分析了合肥盆地中新生代的构造热演化特征. 上白垩统和古近系下段样品的磷灰石裂变径迹(AFT)数据主体表现为靠近部分退火带顶部温度(±65℃)有轻度退火,由此估算晚白垩世至古近纪早期合肥盆地断陷阶段的古地温梯度接近38℃/km,高于盆地现今地温梯度(275℃/km).下白垩统、侏罗系及二叠系样品的AFT年龄(975~25Ma)和锆石裂变径迹(ZFT)年龄(118~104Ma)均明显小于其相应的地层年龄,AFT年龄-深度分布呈现冷却型曲线形态,且由古部分退火带、冷却带或前完全退火带及其深部的今部分退火带组成,指示早白垩世的一次构造热事件和其随后的抬升冷却过程. 基于AFT曲线的温度分带模式和流体包裹体测温数据的综合约束,推算合肥盆地早白垩世走滑压陷阶段的古地温梯度接近67℃/km. 径迹年龄分布、AFT曲线拐点年龄和区域抬升剥蚀时间的对比分析结果表明,合肥盆地在早白垩世构造热事件之后的104Ma以来总体处于抬升冷却过程,后期快速抬升冷却事件主要发生在±55Ma.  相似文献   

9.
喻顺  陈文  张斌  孙敬博  李超  袁霞  沈泽  杨莉  马勋 《地球物理学报》2016,59(8):2922-2936
天山是中亚造山带重要组成部分,其中-新生代构造热演化及隆升剥露史研究是认识中亚造山带构造变形过程与机制的关键.本文应用磷灰石(U-Th)/He技术重建中天山南缘科克苏河地区中-新生代构造热演化及隆升剥蚀过程.磷灰石(U-Th)/He数据综合解释及热演化史模拟表明该地区至少存在晚白垩世、早中新世、晚中新世3期快速隆升剥蚀事件,起始时间分别为~90Ma、~13Ma及~5Ma,且这3期隆升剥蚀事件在整个天山地区具有广泛的可对比性.相对于磷灰石裂变径迹,磷灰石(U-Th)/He年龄记录了中天山南缘地质演化史中更新和更近的热信息,即中天山在晚中新世(~5 Ma)快速隆升剥蚀,其剥蚀速率为~0.47mm·a~(-1),剥蚀厚度为~2300m.总体上,中天山科克苏地区隆升剥蚀起始时间从天山造山带向昭苏盆地(由南向北)逐渐变老,表明了中天山南缘隆升剥蚀存在不均一性,并发生了多期揭顶剥蚀事件.  相似文献   

10.
Low‐temperature thermochronology provides information on the timing of rifting and denudation of passive margins, and the Red Sea with its well‐exposed, young rift margins is a suitable setting for its application. Here we present new apatite fission‐track (AFT) data from Sudan northern hinterland and Red Sea coastal areas. From the former region we obtained ages between 270 ± 2 Ma ad 253 ± 53 Ma, and from the coastal belt between 83 ± 8 Ma and 39 ± 7 Ma. These data prompted a review and comparison with low‐temperature thermochronological data from the whole Nubian Red Sea Margin, and a discussion on their implication in assessing the margin evolutionary style. AFT data are available for Egypt and Eritrea as well as apatite (U‐Th)/He (AHe) ages for two transects transversal to the margin in Eritrea. Both in Egypt and Eritrea AFT data record a cooling event at about 20–25 Ma (Early Miocene) and an earlier, more local, cooling event in Egypt at about 34 Ma (Early Oligocene). The thermal modeling of the Sudan samples provides an indication of a rapid cooling in Miocene times, but does not support nor rules out an Early Oligocene cooling phase. The re‐assessment of new and existing thermochronological data within the known geological framework of the Nubian and conjugate Arabian margins favours the hypothesis that early rifting stages were affecting the whole Gulf of Suez–Red Sea–Gulf of Aden system since the Oligocene. These precocious, more attenuated, phases were followed by major extension in Miocene times. As to the mode of margin evolution, AFT age patterns both in Egypt and Eritrea are incompatible with a downwarp model. The distribution of AHe ages across the Eritrean coastal plain suggests that there the escarpment was evolving predominantly by plateau degradation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract Apatite and zircon fission track ages from Ryoke Belt basement in northeast Kyushu show late Cretaceous, middle to late Eocene, middle Miocene and Quaternary groupings. The basement cooled through 240 ± 25°C, the closure temperature for fission tracks in zircon, mainly during the interval 74-90 Ma as a result of uplift and denudation, the pattern being uniform across northeast Kyushu. In combination with published K-Ar ages and the Turonian-Santonian age of sedimentation in the Onogawa Basin, active suturing along the Median Tectonic Line from 100-80 Ma, at least, is inferred. Ryoke Belt rocks along the northern margin of Hohi volcanic zone (HVZ) cooled rapidly through ∼100°C to less than 50°C during the middle Eocene to Oligocene, associated with 2.5-3.5 km of denudation. The timing of this cooling follows peak heating in the Eocene-Oligocene part (Murotohanto subbelt) of the Shimanto Belt in Muroto Peninsula (Shikoku) inferred previously, and coincides with the 43 Ma change in convergence direction of the Pacific-Eurasian plate and the demise of the Kula-Pacific spreading centre. Ryoke Belt rocks along the southern margin of HVZ have weighted mean apatite fission track ages of 15.3 ± 3.1 Ma. These reset ages are attributed to an increase in geothermal gradient in the middle Miocene combined with rapid denudation and uplift of at least 1.4 km. These ages indicate that heating of the overriding plate associated with the middle Miocene start of subduction of hot Shikoku Basin lithosphere extended into the Ryoke Belt in northeast Kyushu. Pleistocene apatite fission track ages from Ryoke Belt granites at depth in the centre of HVZ are due to modern annealing in a geothermal environment.  相似文献   

12.
低温热年代学数据是一个与热历史过程紧密相关的资料类型,与高温年代学不同,低温热年代学表观年龄本身在很多情况下没有直接的地质意义.当且仅当样品线性持续冷却的情况下,表观年龄才可以被直接解释为样品经过其封闭温度的大致时间.因此,只有结合地质约束通过对低温热年代学数据进行热历史模拟才能更好地揭示其所蕴含的地质信息.对川东北地...  相似文献   

13.
The mineralization ages reported in the past in the Tuwu-Yandong copper district not only are different,but also fall into the Hercynian epoch.This study has achieved 9 zircon and 7 apatite fission track analysis results.The zircon fission track ages range from 158 Ma to 289 Ma and the apatite ages are between 64 Ma and 140 Ma.The mineralization accords with the regional tectonics in the copper district.We consider that the zircon fission track age could reveal the mineralization age based on annealing zone temperature of 140―300℃ and retention temperature of ~250℃ for zircon fission track,and metallogenetic temperature of 120―350℃ in this ore district.Total three mineralization epochs have been identified,i.e.,289―276 Ma,232―200 Ma and 165―158 Ma,and indicate occurrence of the min-eralization in the Indosinian and Yanshan epochs.Corresponding to apatite fission track ages,the three tectonic-mineralizing epochs are 140―132 Ma,109―97 Ma and 64 Ma,which means age at about 100℃ after the mineralization.The three epochs lasted 146 Ma,108 Ma and about 100 Ma from ~250℃ to ~100℃ and trend decrease from early to late.It is shown by the fission track modeling that this district underwent three stages of geological thermal histories,stable in Cretaceous and cooling both before Cretaceous and after 20 Ma.  相似文献   

14.
鄂尔多斯盆地东南缘处于渭北隆起、晋西挠褶带和东秦岭造山带的转折地带,构造位置独特,演化历史复杂.本文选取东缘韩城地区和南缘东秦岭洛南地区上三叠统延长组为研究对象,采集6件砂岩样品进行锆石、磷灰石裂变径迹分析,对关键构造-热事件提供热年代学约束,恢复盆地东南缘不同构造带的热演化史,深化对盆地东南部油气资源赋存条件的认识,以期实现油气勘探的新突破.研究表明韩城和洛南地区的抬升冷却史存在明显差异.磷灰石裂变径迹年龄表现为从南到北减小的趋势.东缘韩城剖面磷灰石裂变径迹记录51.6~66.3 Ma、33 Ma两次抬升冷却的峰值年龄.南缘洛南剖面锆石裂变径迹年龄和磷灰石裂变径迹年龄分别记录89~106 Ma和59~66 Ma的冷却抬升年龄.洛南地区抬升冷却时间较早,剥蚀速率(106m/Ma)大于韩城地区(68m/Ma),且持续时间长.磷灰石裂变径迹(Apatite Fission Track,AFT)热史模拟显示,晚中生代,受燕山运动的影响,东秦岭地区发生强烈的构造岩浆事件,洛南地区热演化程度明显高于韩城地区.洛南剖面的热演化主要受岩浆活动的控制,韩城剖面为埋藏增温型.鄂尔多斯盆地东南缘的裂变径迹年龄格局基本受控于白垩纪以来的抬升冷却事件.  相似文献   

15.
本文通过峨眉山基底卷入构造带低温热年代学(磷灰石和锆石裂变径迹、锆石(U-Th)/He)研究,结合典型构造-热结构特征诠释峨眉山晚中-新生代冲断扩展变形与热年代学耦合性.峨眉山磷灰石裂变径迹(AFT)和锆石(U-Th)/He(ZHe)年龄值分别为4~30Ma和16~118Ma.ZHe年龄与海拔高程关系揭示出ZHe系统抬升剥蚀残存的部分滞留带(PRZ).低温热年代学年龄与峨眉山构造分带性具有明显相关性特征:万年寺逆断层上盘基底卷入构造带AFT年龄普遍小于10Ma,万年寺逆断层下盘扩展变形带AFT年龄普遍大于10 Ma;且空间上AFT年龄与断裂带具有明显相关性,它揭示出峨眉山扩展变形带中新世晚期以来断层冲断缩短构造活动.低温热年代学热史模拟揭示峨眉山构造带晚白垩世以来的多阶段性加速抬升剥蚀过程,基底卷入构造带岩石隆升幅度大约达到7~8km,渐新世以来抬升剥蚀速率达0.2~0.4mm·a-1,其新生代多阶段性构造隆升动力学与青藏高原多板块间碰撞过程及其始新世大规模物质东向扩展过程密切相关.  相似文献   

16.
河砂岩屑热年代学被广泛应用于揭示造山带和流域范围内热演化历史.由于受到地貌特征、剥蚀速率的空间分布、年龄与高程关系等多种因素的影响,河砂岩屑热年代学年龄所代表的意义存在多解性.本文提出了一种利用地貌形态特征和实测河砂热年代学数据模拟流域热史的计算模型.该模型首先利用DEM数据计算流域高程分布特征,通过数据中各象元对应的坡度角大小定量计算剥蚀速率的空间分布,以确定不同高程区域对河砂岩屑样品组分的贡献量.然后根据区域地质特征建立多种可能的热史年龄-高程关系,并模拟计算出与设定的年龄-高程关系相对应的河砂年龄概率分布曲线.最后,通过对模拟河砂年龄概率分布曲线与实测分布曲线的匹配度进行卡方检验,选取最可能形成实测河砂年龄分布的年龄-高程关系,即代表了流域真实的热史演化.通过河砂岩屑磷灰石裂变径迹方法将该模型应用于藏东南地区察隅河两条支流桑曲和贡日嘎布曲流域,模拟计算结果表明两个地区的热史演化均具有多阶段的特征,桑曲流域在38~7Ma之间均匀冷却,对应的剥露速率约为0.14km/Ma,7 Ma以来剥露速率加快,达到1.62km/Ma;贡日嘎布曲的热史年龄记录比桑曲新,18~14 Ma的隆升速率为0.32km/Ma,14~8 Ma比较稳定;8 Ma以来隆升速率逐渐加快,8~5 Ma对应的隆升速率为0.21km/Ma,5~3 Ma为0.43km/Ma,3~1.1 Ma为0.83km/Ma.桑曲的模拟计算结果与前人利用该区域基岩年龄数据所揭示的热史演化特征及剥露速率基本吻合,表明该方法可以准确模拟河砂岩屑年龄所代表的流域热史特征.因此,在地形险峻或者冰川覆盖而无法获取基岩样品的野外地区,可以通过采集河砂样品替代基岩剖面模拟地质体热史特征.  相似文献   

17.
Fission track analysis of apatites from basement rocks of the Wright Valley in southern Victoria Land provides information about the timing, the amount and hence the rate of uplift of the Transantarctic Mountains in this area. Apatite ages increase systematically with elevation, and a pronounced break in the age versus elevation profile has been recognised at about 800 m on Mt. Doorly near the mouth of Wright Valley. The apatite age of about 50 Ma at this point approximates the time at which uplift of the mountain range began. Samples lying above the break in slope lay within the apatite fission track annealing zone prior to uplift, during a Cretaceous to Early Cenozoic period of relative thermal and tectonic stability. At the lower elevations samples had a zero apatite fission track age before the onset of rapid uplift and have track length distributions indicating rapid cooling. Some 4.8–5.3 km of uplift are estimated to have occurred at an average rate of about 100 ± 5m/Ma since uplift began. From the total stratigraphic thickness known above the uplifted apatite annealing zone it can be estimated that the Late Cretaceous/Early Cenozoic thermal gradient in the area was about 25–30°C/km.The occurrence and pattern of differential uplift across the Transantarctic Mountains can be estimated from the vertical offsets of different apatite fission track age profiles sampled across the range. These show the structure of the mountain range to be that of a large tilt block, dipping gently to the west under the polar ice-cap and bounded by a major fault zone on its eastern side. Offset dolerite sills at Mt. Doorly show the mountain front to be step-faulted by 1000 m or more down to the McMurdo Sound coast from an axis of maximum uplift just inland from Mt. Doorly.  相似文献   

18.
Longshou Shan, located at the southern edge of the Alxa block, is one of the outermost peripheral mountains and the northeasternmost area of the northeastern Tibetan plateau. In recent years, through geochronology, thermochronology, magnetic stratigraphy and other methods, a large number of studies have been carried out on the initiation time of major faults, the exhumation history of mountains and the formation and evolution of basins in the northeastern Tibet Plateau, the question of whether and when the northeastward expansion of the northeastern Tibet Plateau has affected the southern part of the Alxa block has been raised. Therefore, the exhumation history of Longshou Shan provides significant insight on the uplift and expansion of the Tibetan plateau and their dynamic mechanism. The Longshou Shan, trending NWW, is the largest mountain range in the Hexi Corridor Basin, and its highest peak is more than 3 600m(with average elevation of 2800m), where the average elevation of Hexi Corridor is 1 600m, the relative height difference between them is nearly 2200m. This mountain is bounded by two parallel thrust faults: The North Longshou Shan Fault(NLSF)and the South Longshou Shan Fault(SLSF), both of them trends NWW and has high angle of inclination(45°~70°)but dips opposite to each other. The South Longshou Shan Fault, located in the northern margin of the Hexi Corridor Basin, is the most active fault on the northeastern plateau, and controls the uplift of Longshou Shan.Due to its lower closure temperature, the lower-temperature thermochronology method can more accurately constrain the cooling process of a geological body in the upper crust. In recent years, the low-temperature thermochronology method has been used more and more in the study of the erosion of orogenic belts, the evolution of sedimentary basins and tectonic geomorphology. In this study, the apatite (U-Th)/He(AHe) method is used to analyze the erosion and uplift of rocks on the south and north sides of Longshou Shan. 11 AHe samples collected from the south slope exhibit variable AHe ages between~8Ma and~200Ma, the age-elevation plot shows that before 13~17Ma, the erosion rate of the Longshou Shan is very low, and then rapid erosion occurs in the mountain range, which indicates that the strong uplift of Longshou Shan occurred at 13~17Ma BP, resulting in rapid cooling of the southern rocks. In contrast, 3 AHe ages obtained from the north slope are older and more concentrated ranging from 220Ma BP to 240Ma BP, indicating that the north slope can be seen as a paleo-isothermal surface and the activity of the north side is weak. The results of thermal history inverse modeling show that the South Longshou Shan Fault was in a tectonic quiet period until the cooling rate suddenly increased to 3.33℃/Ma at 14Ma BP, indicating that Longshou Shan had not experienced large tectonic events before~14Ma BP.
We believe that under the control of South Longshou Shan Fault, the mountain is characterized by a northward tilting uplift at Mid-Miocene. Our results on the initial deformation of the Longshou Shan, in combination with many published studies across the northeastern margin of the Tibetan plateau, suggest that the compression strain of the northeastern margin of the Tibetan plateau may expand from south to north, and the Tibetan plateau has expanded northeastward to the southern margin of the Alxa block as early as Mid-Miocene, making Longshou Shan the current structural and geomorphic boundary of the northeastern plateau.  相似文献   

19.
赵孟为 《地球物理学报》1996,39(Z1):237-248
对鄂尔多斯盆地磷灰石裂变径迹资料深入分析表明.最迟23Ma以来盆地发生了一期由于快速抬升剥蚀引起的冷却事件.盆地东部以95m/Ma的速率抬升,造成约2000m的剥蚀量;而盆地西部则以56m/Ma的速率抬升,导致了约1000m的剥蚀量.盆地东、西部的差异抬升剥蚀导致了盆地现今微微西倾的构造面貌.这一抬升剥蚀事件是印度板块与欧亚板块碰撞引起亚洲构造运动形式以挤压为主,转换为中新世以来以地壳增厚为主的结果.K-Ar年龄和镜质体反射率资料分析表明,盆地在170-160Ma(中侏罗末)曾发生一期热事件,使古地温梯度达57℃/km,古热流值达96-109mw/m.  相似文献   

20.
The Møre Trøndelag Fault Complex (MTFC) of central Norway is a long-lived structural zone whose tectonic history included dextral strike slip, sinistral strike slip, and vertical offset. Determination of an offset history for the MTFC is complicated by the lack of well preserved stratigraphic markers. However, low temperature apatite fission track (AFT) thermochronology offers important new clues by allowing the determination of exhumation histories for individual fault blocks presently exposed within the MTFC area. Previously published AFT data from crystalline basement in and near the MTFC suggest the region has a complicated pattern of exhumation. We present new AFT data from a NW–SE transect perpendicular to the principal structural grain of the MTFC. FT analyses of 15 apatite samples yielded apparent ages between 90 and 300 Ma, with mean FT length ranging from 11.8 to 13.5 μm. Thermal models based upon the age and track length data show the MTFC is comprised by multiple structural blocks with individual exhumation histories that are discrete at the 2σ confidence level. Thermal modeling of the AFT data indicates exhumation progressed from west to east, and that the final juxtaposition and exhumation of the innermost blocks took place during Cretaceous or Tertiary (possibly Neogene) time. We suggest that least some of the fracture lineaments of central Norway were re-activated during Mesozoic extension and the opening of the Norwegian sea, and may have remained active into the Cenozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号