首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
采用GNSS精密单点定位(PPP)技术和时钟驯服技术,构建了基于PPP的云平台高精度授时方案,研制了搭载多系统GNSS接收机板卡、恒温晶振(OCXO)和数字信号处理器(DSP)的授时原理样机。利用协同精密定位平台分析中心(武汉)提供的5 s间隔卫星轨道和钟差产品,采用PPP技术实时解算授时终端坐标和钟差,通过驯服恒温晶振输出亚纳秒精度的1 PPS,实现了长时间高精度的授时能力。本文通过短基线比较和与UTC绝对时间基准比较,验证了精密单点授时精度(RMS)优于1 ns。  相似文献   

2.
施闯  辜声峰  楼益栋  郑福  宋伟  张东  毛飞宇 《测绘学报》2022,51(7):1206-1214
广域实时精密定位与时间服务已成为GNSS应用领域研究热点,目前国内外学者围绕其模型算法已展开大量的研究。本文重点论述广域实时精密定位与时间服务数据的处理方法和服务系统,给出了基于不同基准约束的卫星钟差解算数学模型,提出通过引入外接原子钟测站、标准时间源(UTC/BDT)等不同时间基准,构建卫星拟稳基准、外接原子钟跟踪站拟稳基准及标准时间源等约束下的钟差解算模型,分析了时间基准对精密单点定位和精密单点授时的影响。本文采用实时卫星轨道、钟差、相位偏差、电离层延迟等服务产品及跟踪站实时数据,验证了系统产品可靠性及终端定位与时间服务性能。实测结果表明:GPS轨道径向精度1.8 cm,钟差STD精度约0.05 ns;BDS-3轨道径向精度6.7 cm,钟差STD精度优于0.1 ns;GPS和BDS-2电离层改正精度分别为0.74 TECU与1.03 TECU。基于该产品实现了用户端PPP、PPP-RTK及PPT、PPT-RTK服务,满足了用户实时厘米级定位和优于0.5 ns的单站时间传递服务,当采用GPS+BDS-2 PPP-RTK解算时,平面收敛至5 cm约需要12 min。  相似文献   

3.
国家授时中心保持的协调世界时UTC(NTSC)(Coordinated Universal Time,National Time Service Center)与UTC的偏差保持在±10 ns以内。为了使远程用户获得高精度的UTC(NTSC)时间频率信号,利用国家授时中心保持的UTC(NTSC)时频信号和卫星共视时间比对方法,搭建了一套UTC(NTSC)远程复现系统,用于实现远程用户时间频率校准并能在远程恢复出UTC(NTSC)的时间频率信号。研究了基于UTC(NTSC)的时间频率远程复现方法,该方法基于改进的卫星共视法,可实现对用户本地参考时间与可视卫星钟的钟差进行连续实时监测,去除了传统共视时间传递方法中每个观测周期内的观测死时间;设计并实现了UTC(NTSC)远程复现系统,系统包括基准终端、配送终端和数据分析处理中心,基准终端测量UTC(NTSC)与可视卫星钟的钟差;配送终端测量本地原子钟与可视卫星钟的钟差,并在本地驾驭生成与UTC(NTSC)同步的时频信号;数据处理中心处理来自基准终端和配送终端的数据;评估了系统测量的不确定度,得出零基线条件下,系统授时精度达到0.8 ns;另外,通过对各远程用户不同类型钟的驾驭情况,得出铯钟的频率测量天稳达到2.84×10-14,铷钟的频率测量天稳达到8.24×10-14。  相似文献   

4.
随着北斗三号全球卫星导航系统的正式开通,各数据分析中心陆续开始提供北斗三号系统的实时精密产品,使基于北斗三号的实时精密单点定位(PPP)成为可能。实时精密产品质量是影响实时PPP定位性能的重要因素,直接决定了实时PPP的可用性、收敛时间和定位精度。为了促进基于北斗三号的实时PPP的研究和应用发展,本文对现有的北斗三号实时精密产品质量进行了评估,包括数据完整率、钟差精度和轨道精度,并结合全球均匀分布的5个基准站的观测数据,分析了北斗三号的实时PPP性能。试验结果表明,北斗三号实时数据完整率为98.3%,精密钟差和轨道精度分别为0.8 ns、8 cm,加入北斗三号系统后,相比GPS的实时PPP收敛速度提高了30%,定位精度提高了8%。  相似文献   

5.
在基于精密单点定位(PPP)的授时方法中,卫星钟差产品的高精度时间基准至关重要.针对实时卫星钟差产品时间基准不够稳定的问题,本文采用一组具有原子钟外部输入的国际全球卫星导航系统(GNSS)服务(IGS)跟踪站建立了顾及原子钟变化特性的基准精化方法.该方法首先采用阿伦方差对不同的IGS跟踪站外接原子钟进行稳定度分析,挑选出一组稳定度高的原子钟用以精化时间基准.在此基础上,利用阿伦方差分析各台原子钟的噪声参数特征,并确定不同原子钟之间的权比关系.最终,建立时间基准改正量的随机模型,并计算出精化后的时间基准.通过实例验证表明:与IGS事后精密钟差产品定义的时间基准比较,改正后的实时钟差基准单天内的标准差(STD)优于0.1 ns,相比于改正前最高提升了93%.同时,基准改正后的天内万秒稳达到10-15量级,实现了一个量级的提高.此外,通过相对钟差精度的分析,表明钟差基准修正不影响PPP的定位精度.  相似文献   

6.
陈良  耿长江  周泉 《测绘学报》2016,45(9):1028-1034
实时GNSS精密单点定位(PPP)技术必须使用实时的高精度卫星精密轨道和钟差。本文研究了精密卫星钟差融合解算模型及策略,并利用滤波算法实现了北斗/GPS实时精密卫星钟差融合估计算法。仿真实时试验结果显示:获得的北斗/GPS实时钟差与GFZ事后多GNSS精密钟差(GBM)的标准差在0.15 ns左右;使用该钟差进行GPS动态PPP试验,收敛后水平精度优于5 cm,高程精度优于10 cm;使用仿真实时钟差进行的北斗动态PPP与使用GFZ事后多GNSS精密钟差开展的试验相比精度相当,可实现分米级定位。  相似文献   

7.
曹新运 《测绘学报》2020,49(8):1068-1068
正精密单点定位(precise point positioning,PPP)技术能够在全球区域获取用户在国际地球参考框架下的精确三维坐标,打破了以往只能够使用差分定位技术才能够实现高精度定位的局面,是继RTK/NRTK技术之后出现的又一次技术革命。论文旨在构建实时GNSS PPP服务系统,围绕GNSS卫星钟差估计、多系统融合PPP、卫星姿态、GPS未校准相位延迟(uncalibrated phase delays,UPD)估计、PPP模糊度固定等展开研究,为用户获取实时、高精度和高可靠性的GNSS PPP服务奠定理论和实践基础。本文的主要工作和贡献如下:  相似文献   

8.
IGS的多GNSS实验项目MGEX(Multi-GNSS Experiment)提供的精密钟差产品广泛应用于高精度导航定位领域。本文研究了卫星钟差精度评估的方法,以IGS最终钟差作为GPS卫星基准,以北斗星地双向时间频率传递钟差作为北斗卫星基准,对GFZ、CODE和WHU这3个分析中心的MGEX钟差产品精度进行了分析。研究结果表明:MGEX实验的GPS最终钟差RMS优于0.30 ns;超快速钟差实测部分RMS优于0.16 ns;24 h预报误差RMS优于3.5 ns。各分析中心北斗GEO卫星最终钟差互差RMS为0.75 ns;IGSO卫星为2.27~3.8 ns;MEO卫星为0.6~1.2 ns。北斗星地双向时间频率传递检核GEO卫星最终钟差RMS为2.6~2.7 ns;IGSO和MEO卫星为1~1.5 ns。北斗卫星超快速钟差实测部分RMS优于1 ns;24 h预报误差RMS为7~9 ns。  相似文献   

9.
施闯  郑福  楼益栋 《测绘学报》2017,46(10):1354-1363
采用IGS、MGEX、北斗地基增强网的实时观测数据,研制北斗广域精密定位服务系统,实时生成北斗高精度轨道、钟差、电离层产品,提供厘米级北斗双频PPP、分米级单频PPP、米级单频伪距定位服务。对实时产品评估分析的结果表明:北斗卫星实时轨道与钟差产品URE统计精度约为2.0cm,实时电离层精度优于4.0TECU。采用全国分布的实时测站动态定位精度(95%置信度)评估分析表明:北斗双频PPP精度存在明显的区域特征,高纬度以及西部边缘地区的定位精度平面约0.2m,高程约0.3m;中部地区定位精度平面优于0.1m,高程优于0.2m,接近GPS实时PPP精度水平;北斗与GPS融合可以提高单北斗、单GPS的定位性能,尤其是显著加快了PPP收敛时间,收敛时间缩短到20min内。另外,除边缘地区外,北斗单频PPP实现平面0.5m,高程1.0m;北斗单频伪距单点定位实现平面2.0m,高程3.0m。  相似文献   

10.
北斗卫星导航系统新一代试验卫星星座由2颗高轨倾斜地球同步轨道卫星(IGSO)和3颗中轨地球轨道卫星(MEO)组成,2016年2月全部发射入轨,其任务是验证北斗系统从目前区域导航定位授时服务走向全球服务的新技术体制设计及指标性能。导航卫星星载原子钟是最重要载荷之一,负责星上时间频率基准信号维持和产生。本文利用星地双向时频传递设备观测的星地钟差数据,评估了试验星配置的新型高精度铷钟和被动型氢钟的实际性能,定量比较了相对于北斗区域系统卫星钟的性能提升。结果表明,新一代试验星与北斗区域系统卫星钟差预报精度相比较有较大提高,IGSO卫星短期预报误差从0.65 ns减小到0.30 ns,MEO卫星短期预报误差从0.78 ns减小到0.32 ns,IGSO/MEO卫星中期预报误差均从2.50 ns减小到约1.50 ns.时频系统是新一代试验系统地面运控的重要组成部分,负责北斗新一代试验系统时间频率信号产生和维持。本文利用试验系统与UTC(BSNC)之间的比对数据,评估了新一代试验系统时间的实际性能,定量比较了相对于北斗区域系统时间的性能提升。结果表明,新一代试验系统时间相对于北斗区域系统时间性能有较大提高,万秒稳和天稳较北斗区域系统提高约半个数量级。时频体制是新一代试验系统的重要技术体制设计之一。本文利用中心节点与末节点的双向时间测量数据,评估了新一代试验系统末节点时频信号的实际性能。结果表明,中心节点与末节点之间具有很好的一致性,时差最大为0.23 ns.   相似文献   

11.
GNSS增强系统中精密实时钟差高频估计及应用研究   总被引:1,自引:0,他引:1  
GNSS星基差分增强系统依赖于实时轨道及钟差增强信息。本文主要研究多GNSS实时精密钟差估计模型,在传统非差基础上优化待估参数,实现了一种高效的Multi-GNSS实时钟差简化估计模型。基于PANDA软件开展了实时轨道数据处理与分析,经过验证可获得的GPS/北斗MEO/Galileo实时轨道径向精度1~5cm,北斗GEO/IGSO卫星径向精度约10cm。分析发现本文优化的实时钟差简化估计模型单历元解算效率较高,可应用于实时钟差增强信息高频(如1Hz)更新,且解算获得的实时钟差不存在常偏为绝对钟差;基于实时轨道,通过该模型可获得实时钟差精度GPS约0.22ns,北斗GEO约0.50ns、IGSO/MEO约0.24ns,Galileo约0.32ns。在此基础上,利用目前所获取的MultiGNSS实时数据流搭建了Multi-GNSS全球实时增强原型系统,并基于互联网实时播发增强信息,可初步实现实时PPP厘米级服务、伪距米级导航定位服务。  相似文献   

12.
实现低轨导航增强的关键前提是实现低轨星座的整网时间同步,本文针对低轨导航增强系统,提出了一种基于实时精密单点定位(RT-PPP)的低轨卫星高精度时间同步方法,以解决低轨星座实时高精度时间同步的问题. 本文分析了在处理过程中存在的各类误差,介绍了低轨卫星采用状态空间(SSR)改正信息通过精密单点定位(PPP)实现实时高精度时间同步方法的处理流程,将此方法应用于气象、电离层与气候星座观测系统(COSMIC)卫星实测数据的处理,并将该方法与采用广播星历伪距的方法以及事后精密星历的方法进行了比较分析. 结果表明:采用SSR改正信息PPP的方式对2颗COSMIC卫星进行GPS双频观测值的解算,得到的轨道误差的标准差在分米级,钟差误差标准差分别在2.4 ns和2.3 ns左右,可以达到纳秒级. 通过对不同方法解算的结果进行比较可以看出,采用SSR改正信息PPP的方法明显优于采用广播星历伪距方法的解算精度,且与事后精密星历PPP的方法解算精度相当.   相似文献   

13.
北斗区域导航系统的PPP精度分析   总被引:3,自引:0,他引:3  
北斗卫星导航系统的开放运行为其在高精度领域的应用提供了可能,系统精密单点定位性能受到了极大关注。本文首先介绍了北斗区域导航系统的星座和BDS/GPS跟踪网,分析了基于国内布站定轨的北斗卫星精密轨道和钟差精度。在此基础上研究了北斗区域导航系统静态、动态精密单点定位精度,并与GPS定位结果进行比较。实测算例表明:北斗精密单点定位可以实现静态厘米级、动态分米级的定位精度,达到目前GPS精密单点定位水平。  相似文献   

14.
针对北斗卫星导航系统的卫星姿态模型、天线相位中心改正及卫星定轨数据处理策略未统一的现状,该文对比分析了武汉大学和德国地学研究中心提供的北斗事后精密轨道和钟差产品的差异及精度,结合实测数据,通过分析精密单点定位的定位精度来比较两中心精密轨道和钟差的差异。实验结果表明:北斗卫星的精密轨道精度与轨道类型有关,地球静止轨道(GEO)卫星的轨道精度为米级,倾斜地球同步轨道(IGSO)卫星的轨道精度为分米级,中地球轨道(MEO)卫星切向、法向和径向的精度分别为10.81、5.41和3.37cm;GEO卫星钟差精度优于0.38ns,IGSO卫星钟差优于0.25ns,MEO卫星钟差优于0.15ns;两家分析中心产品的北斗静态精密单点定位的平面精度相当;北斗静态精密单点定位的RMS统计值平面精度优于3cm,三维精度优于7cm。  相似文献   

15.
针对传统事后精密单点定位技术的时间延迟问题,该文基于IGS RTS实时数据流产品,开展了实时精密单点定位技术在远海实时GPS验潮中的应用研究.对RTS改正的实时精密卫星轨道和钟差进行了精度验证和分析,给出了RT-PPP的数据处理策略以及实时GPS验潮的基本流程;组织和实施了渤海湾船载GPS验潮试验,以压力式验潮仪数据为参考,对远距离实时GPS潮汐测量结果进行了精度分析.结果表明:①以IGS最终卫星轨道和钟差产品为参考,RTS实时精密卫星轨道在X、y、Z方向的精度(RMS)均优于3 cm,卫星钟差的精度优于0.15 ns;②采用傅里叶低通滤波方法,消除波浪对潮汐观测的影响,进一步提取潮位信息.在忽略船体姿态改正的情况下,实时精密单点定位验潮相对于压力式验潮仪结果的最大偏差优于20 cm,RMS达到7.5 cm.  相似文献   

16.
北斗广域差分分区综合改正数定位性能分析   总被引:1,自引:0,他引:1       下载免费PDF全文
目前北斗广域分米级星基增强系统在钟差改正数、轨道改正数的基础上,提出了基于相位观测值的分区综合改正数,介绍了分区综合改正数的概念及单频、双频用户的使用方法与定位模型。利用中国范围不同地区的北斗观测数据和对应的分区综合改正信息,统计了单频和双频用户分区综合改正精密单点定位的精度,并对其收敛性进行了分析。通过与使用GFZ提供的北斗超快速精密星历的定位效果比较,验证了分区综合改正定位在实时定位中的优势。在此基础上进一步对中国范围内分区综合改正定位效果与分区中心距离的关系进行了分析,并对不同观测时间长度的定位效果进行比较。结果表明,经分区综合改正后的双频用户平均25 min内动态定位三维误差能收敛至0.5 m以内,收敛后的定位精度为水平0.15 m,高程0.2 m;单频用户平均20 min内动态定位三维误差能收敛至0.8 m以内,收敛后的定位精度为水平0.3 m,高程0.5 m。随着用户站距离分区中心越远,定位效果总体呈现变差的趋势。总体上,当用户在分区中心1 000 km范围内时,北斗广域分区综合改正数将能提供实时分米级定位服务。  相似文献   

17.
北斗三号卫星导航系统(BeiDou-3 navigation satellite system,BDS-3)精密单点定位(precise point positioning,PPP)-B2b信号为中国及周边地区提供实时PPP(real-time PPP,RTPPP)服务,为了推广PPP-B2b信号的应用,需要对其服务性能进行评估。根据全球连续监测评估系统(international GNSS monitoring and assessment system, iGMAS)在中国的测站2020年9月的观测数据,评估了基于PPP-B2b信号的北斗卫星导航系统的轨道和钟差精度;分析了使用BDS-3PPP-B2b产品的B1I+B3I、B1c+B2a信号组合的定位精度以及北(north,N)方向、东(east,E)方向、天(up,U)方向收敛情况。结果显示:BDS轨道产品径向精度均值为0.1 m,切向精度均值为0.31 m,法向精度均值为0.3 m;钟差精度均方根的均值为2.26 ns,标准差的均值为0.08 ns。关于PPP收敛时间情况,在N、E、U 3个方向上,使用德国地学中心多系统快速产品...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号