首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of a stationary (equilibrium) range in a wind-wave spectrum is investigated by numerical simulation. The equation of evolution of the wind-wave spectrum is solved using the exact calculation of the Hasselmann kinetic integral and involving various modifications of known parameterizations of the mechanisms of wave pumping by wind (In) and of wave dissipation (Dis). It is shown that it is these two mechanisms that are responsible for the shape of the stationary range of the wind-wave spectrum, whereas the nonlinear mechanism plays a stabilizing but subsidiary role. With an appropriate choice of mathematical representations for In and Dis, any known empirical shape of the stationary range of the spectrum can be obtained. During the calculations it is found that, for real wind waves, the known representations of In and Dis do not ensure the existence of the inertial interval required for Kolmogorov-type spectra formation due to the nonlinear interactions between waves.  相似文献   

2.
A long-term mean turbulent mixing in the depth range of 200–1000 m produced by breaking of internal waves across the middle and low latitudes (40°S–40°N) of the Pacific between 160°W and 140°W is examined by applying fine-scale parameterization depending on strain variance to 8-year (2005–2012) Argo float data. Results show that elevated turbulent dissipation rate (ε) is related to significant topographic regions, along the equator, and on the northern side of 20°N spanning to 24°N throughout the depth range. Two patterns of latitudinal variations of ε and the corresponding diffusivity (Kρ) for different depth ranges are confirmed: One is for 200–450 m with significant larger ε and Kρ, and the maximum values are obtained between 4°N and 6°N, where eddy kinetic energy also reaches its maximum; The other is for 350–1000 m with smaller ε and Kρ, and the maximum values are obtained near the equator, and between 18°S and 12°S in the southern hemisphere, 20°N and 22°N in the northern hemisphere. Most elevated turbulent dissipation in the depth range of 350–1000 m relates to rough bottom roughness (correlation coefficient?=?0.63), excluding the equatorial area. In the temporal mean field, energy flux from surface wind stress to inertial motions is not significant enough to account for the relatively intensified turbulent mixing in the upper layer.  相似文献   

3.
2012年夏季海南岛东岸上升流区的混合观测   总被引:1,自引:0,他引:1  
The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in the coastal waters, which are 3℃ cooler than the offshore waters and have a salinity 1.0 greater than that of the offshore waters. The magnitude of the dissipation rate of turbulent kinetic energy ε in the upwelling region is O(10–9 W/kg), which is comparable to the general oceanic dissipation. The inferred eddy diffusivity K_ρ is O(10–6 m~2/s), which is one order of magnitude lower than that in the open ocean. The values are elevated to K_ρ≈O(10–4 m~2/s) near the boundaries. Weak mixing in the upwelling region is consistent with weak instability as a result of moderate shears versus strong stratifications by the joint influence of surface heating and upwelling of cold water.The validity of two fine-scale structure mixing parameterization models are tested by comparison with the observed dissipation rates. The results indicate that the model developed by Mac Kinnon and Gregg in 2003 provides relatively better estimates with magnitudes close to the observations. Mixing parameterization models need to be further improved in the coastal upwelling region.  相似文献   

4.
Similarity and dimension considerations applied to convection in a rotating fluid allows one to estimate the sizes and horizontal velocities of generated vortices. To do this, it is necessary to know the buoyancy flux in the fluid and the angular velocity of fluid rotation [1, 2]. The author’s preliminary efforts [3] have shown that the sizes, wind speeds, and total kinetic energy can thus be estimated correctly for tropical cyclones (TCs), as well as for polar lows (PLs) (which are often called explosive mesocyclones because they take just a few hours to develop). In this study, the sensible and latent heat fluxes for U = 33 m/s and the related buoyancy fluxes are estimated on the basis of climatology, bulk formulas, and the velocity scale of convection in a rotating fluid. In the tropics, at hurricane wind speeds U ≥ 33 m/s and climatological air humidity r = 80%, the total heat flux at the water surface temperature T s ≥ 26°C becomes equal to or greater than 700 W/m2. Due to the Clausius-Clapeyron equation, the latent heat flux to the atmosphere (the main part of the flux in the tropics) decreases substantially at lower values of T s. Thus, an energy flux from the ocean to the atmosphere of 700 W/m2 or greater should be regarded as the first necessary condition for TC genesis instead of the temperature T s. Low static stability, which must be at least half its climatological value as estimated here, is another necessary condition [4]. In polar regions, total fluxes roughly twice those in the tropics are needed for the formation of explosive mesocyclones, PLs, which is explained by the much smaller role of latent heat, greater geostrophicity, and stronger static stability of the atmosphere there. Enthalpy fluxes and wind speeds are interrelated: the larger the flux is, the stronger the convection, the higher the concentration of angular momentum in an ascending convective air column, and the greater the azimuthal velocity in the vortex are, which in turn enhances the transfer of energy from the ocean. Considering the problem with the use of simple analytic relations makes it possible, for the first time, to find a numerical criterion for their generation. It is hoped that this material may be useful for educational purposes as well.  相似文献   

5.
认识海洋在全球碳循环中的作用及其对环境变化的响应,需要高时空分辨率的观测数据。由于轨道宽度、云雨天气、太阳耀斑等的影响,单一的水色传感器的观测能力十分有限,将多源海洋水色卫星进行融合是提高水色数据时空覆盖的一种有效途径。SeaWiFS和MERIS分别于2010年12月11日和2012年5月9日停止运行,在很大程度上降低了水色融合产品时空覆盖的提升。我们在融合过程中加入了FY-3 MERSI数据,生成了全球海洋叶绿素浓度遥感融合产品数据集。数据源包括SeaWiFS、MERIS、MODIS-Aqua、VIIRS和MERSI。结果表明:加入MERSI后,融合产品的日平均有效空间覆盖提高了9%;采样频率(同一区域一年中获取有效数据的次数)由57天/年提高到109天/年。利用实测数据和国外同类融合产品(ESA GlobColour和NASA MEaSUREs)对新的数据集进行了质量评价。与实测数据相比,加入MERSI的融合产品精度与未加入MERSI的融合产品基本一致;与国外同类融合产品的偏差小于10%。新数据集的时间序列特性与未加入MERSI的融合产品以及单传感器的一致。  相似文献   

6.
The chlorophyll a concentration (Cchl a) in the Sea of Azov is estimated by the two-band NIR-red algorithm [34] from MERIS images for 2002–2012. The sea-truth spectrophotometric measurements and MERIS remote estimates of Cchl a are compared. The monthly average Cchl a values are mapped from MERIS data for its lifetime for the first time. The features of the spatiotemporal distribution of Cchl a are ascertained. Differences between the seasonal dynamics of Cchl a in the Sea of Azov according to the literature data and the dynamics derived from MERIS data are found, namely: the summer–autumn phytoplankton growth period is longer than the spring period and is characterized by higher Cchl a values throughout the water area.  相似文献   

7.
8.
Based on long-term (1985–1995) monitoring data, the paper considers the peculiarities of seasonal variability in the spatial and vertical distribution of particulate organic phosphorus (РPOM) in the surface layer and in the photosynthetic zone in the northwestern Black Sea. Regression equations, experimental data, and satellite observations for the chlorophyll a concentration allowed us to evaluate the seasonal longterm (1979–1995) variability in РPOM in the surface layer and photosynthesis zone. The ratios of the concentrations of particulate organic carbon, nitrogen, phosphorus, and chlorophyll a are calculated and statistical estimates of seasonal changes in the РPOM in the areas with different degrees of influence of river runoff and water of open seas are obtained. The consistency of intra-annual changes in the concentrations of РPOM, chlorophyll a, and phytoplankton biomass is shown, which indicates the role of phytoplankton in the formation of РPOM and in its intra- and interannual variability in the northwestern part of the sea. It is shown that long-term seasonal variations in РPOM and related changes in the concentration of chlorophyll a depend on the variability of bulk river runoff, the extent of its abundance in the northwestern shelf, and regional hydrometeorological conditions.  相似文献   

9.
引入拖曳系数参数化的海冰自由漂流模拟研究   总被引:2,自引:0,他引:2  
Many interesting characteristics of sea ice drift depend on the atmospheric drag coefficient(C_a) and oceanic drag coefficient(C_w).Parameterizations of drag coefficients rather than constant values provide us a way to look insight into the dependence of these characteristics on sea ice conditions.In the present study,the parameterized ice drag coefficients are included into a free-drift sea ice dynamic model,and the wind factor α and the deflection angle θ between sea ice drift and wind velocity as well as the ratio of C_a to C_w are studied to investigate their dependence on the impact factors such as local drag coefficients,floe and ridge geometry.The results reveal that in an idealized steady ocean,C_a/C_w increases obviously with the increasing ice concentration for small ice floes in the marginal ice zone,while it remains at a steady level(0.2-0.25) for large floes in the central ice zone.The wind factor α increases rapidly at first and approaches a steady level of 0.018 when A is greater than 20%.And the deflection angle θ drops rapidly from an initial value of approximate 80° and decreases slowly as A is greater than20%without a steady level like α.The values of these parameters agree well with the previously reported observations in Arctic.The ridging intensity is an important parameter to determine the dominant contribution of the ratio of skin friction drag coefficient(C_s' /C_s) and the ratio of ridge form drag coefficient(C_r'/C_r) to the value of C_a/C_w,α,and θ,because of the dominance of ridge form drag for large ridging intensity and skin friction for small ridging intensity among the total drag forces.Parameterization of sea ice drag coefficients has the potential to be embedded into ice dynamic models to better account for the variability of sea ice in the transient Arctic Ocean.  相似文献   

10.
Instead of approximation formula ln(E(t)/E(0)) = [(a ? bt)t/(c + T)] commonly used at present for representing dependence of pressure of saturated streams of liquid water E upon temperature we suggested new approximation formula of greater accuracy in the form ln(E(t)/E(0)) = [(A ? Bt + Ct 2)t/T], where t and T are temperature in °C and K respectively. For this formula with parameters A = 19.846, B = 8.97 × 10?3, C = 1.248 × 10?5 and E(0) = 6.1121 GPa with ITS-90 temperature scale and for temperature range from 0°C to 110°C relative difference of approximation applying six parameter formula by W. Wagner and A. Pruß 2002, developed for positive temperatures, is less than 0.005%, that is approximately 15 times less than accuracy obtained with the firs formula. Increase of temperature range results in relative difference increasing, but for even temperature range from 0°C to 220°C it does not higher than 0.1%. For negative temperatures relative difference between our formula and a formula of D. M. Murphy and T. Koop, 2005, is less than 0.1% for temperatures higher than ?25°C. This paper also presents values of coefficients for approximation of Goff and Grach formula recommended by IMO. The procedure of finding dew point T d for known water steam pressure e n based on our formula adds up to solving an algebraic equation of a third degree, which coefficients are presented in this paper. For simplifying this procedure this paper also includes approximation ratio applying a coefficient A noted above, in the form T d (e n ) = \(\frac{{AT_0 }}{{A - \varepsilon }}\) + 0.0866?2 + 0.0116?10/3, where ? = ln(e n /E(T 0)). Error of dew point recovery in this ratio is less than 0.005 K within the range from 0 to 50°C.  相似文献   

11.
Parametrization of turbulent fluxes over inhomogeneous landscapes   总被引:1,自引:0,他引:1  
Reasons for the nonclosure of the heat balance in the atmospheric boundary layers over natural land surfaces are analyzed. Results of measuring the heat-balance components over different land surfaces are used. The Cabauw (Netherlands) data (obtained throughout 1996 over a grass surface with intermittent shrubs and single trees) and the data from the Anchor station in Germany (measured over coniferous forest in 2000–2001) are analyzed. In all, the analysis involves about fifty thousand independent values of the heat-balance components measured in the experiments, which should be indicative of the reliability of the results obtained in the paper. The data have shown that the heat balance is not closed and the imbalance is 50–250 W/m2. The sum of the latent and sensible heat fluxes λE + H = STF is found to be systematically smaller than the difference between the net radiation and the heat flux into the ground R n ? G. It is shown that the main cause of a systematic heat imbalance in the atmospheric boundary layers over inhomogeneous land surfaces is that the methods of surface-flux measurement and estimation are based on the theory that requires the hypothesis of stationarity and horizontal homogeneity. Direct data analysis has shown that the heat imbalance increases with landscape inhomogeneity. In the paper, a parametrization of the heat imbalance is carried out and the coefficient k f (z 0 ef /L ef ) is introduced as a measure of inhomogeneity. For this, data from the experiments FIFE, KUREX, TARTEX, SADE, etc., are also used. Empirical formulas are presented to refine the results of direct measurements and calculations of surface fluxes over natural (inhomogeneous) land surfaces from profile and standard (using bulk parametrizations) data. These formulas can also be used to determine surface fluxes over inhomogeneous underlying land surfaces in order to take into account so-called subgrid-scale effects in constructing prediction models.  相似文献   

12.
河口有色溶解有机物(colored dissolved organic matter,CDOM)的分布是各种物理-生物地球化学过程共同作用的结果。为实现河口高动态变化CDOM的监测,遥感是一种重要的手段。由珠江口四个不同季节的航次获得的实测数据,本文构建了一个遥感算法以反演CDOM在400 nm的吸收系数(aCDOM (400))。该算法使用以波段反射率比值Rrs (667)/Rrs (443)和Rrs (748)/Rrs (412)为自变量。将构建的算法应用于2002-2014年的MODIS/Aqua数据,本文计算了珠江口不同季节的aCDOM (400)气候态分布。CDOM的分布主要受珠江径流量和区域水下地形特征的影响。沿着垂直于水深梯度的断面,气候态aCDOM (400)呈指数减少(y=aebx,b<0),但不同季节差异很大。珠江口CDOM主要是河流淡水输运而来。其中,富里酸比例随盐度的增加而降低。基于构建的算法、CDOM保守混合方程和径流量,本文由MODIS/Aqua数据进一步估算了2002-2014年夏季和冬季珠江DOC的有效入海浓度和有效入海通量。珠江的有效入海浓度和有效入海通量都与流量存在正相关关系,且在夏季的相关性更明显,R2分别为0.698和0.9657。  相似文献   

13.
Seasonal and interannual variations in adjective heat fluxes in the ocean (dQoc) and the convergence of advective heat fluxes in the atmosphere (dQatm) in the Barents Sea region have been investigated over the period of 1993–2012 using the results of the MIT regional eddy-permitting model and ERA-Interim atmospheric reanalysis. Wavelet analysis and singular spectrum analysis are used to reveal concealed periodicities. Seasonal 2- to 4- and 5- to 8-year cycles are revealed in the dQoc and dQatm data. It is also found that seasonal variations in dQoc are primarily determined by the integrated volume fluxes through the western boundary of the Barents Sea, whereas the 20-year trend is determined by the temperature variation of the transported water. A cross-wavelet analysis of dQoc and dQatm in the Barents Sea region shows that the seasonal variations in dQoc and dQatm are nearly in-phase, while their interannual variations are out-of-phase. It is concluded that the basin of the Barents Sea plays an important role in maintaining the feedback mechanism (the Bjerknes compensation) of the ocean–atmosphere system in the Arctic region.  相似文献   

14.
Results obtained from simulating the propagation of infrasonic waves from the Chelyabinsk meteoroid explosion observed on February 15, 2013, are given. The pseudodifferential parabolic equation (PDPE) method has been used for calculations. Data on infrasonic waves recorded at the IS31 station (Aktyubinsk, Kazakhstan), located 542.7 km from the likely location of the explosion, have been analyzed. Six infrasonic arrivals (isolated clearly defined pulse signals) were recorded. It is shown that the first “fast” arrival (F) corresponds to the propagation of infrasound in a surface acoustic waveguide. The rest of the arrivals (T1–T5) are thermospheric. The agreement between the results of calculations based on the PDPE method and experimental data is satisfactory. The energy E of the explosion has been estimated using two methods. One of these methods is based on the law of conservation of the acoustic pulse I, which is a product of the wave profile area S/2 of the signal under analysis and the distance to its source E I [kt] = 1.38 × 10–10 (I [kg/s])1.482. The other method is based on the relation between the energy of explosion and the dominant period T of recorded signal E T [kt] = 1.02 × (T [s]2/σ)3/2, where σ is the dimensionless distance determining the degree of nonlinear effects during the propagation of sound along ray trajectories. According to the data, the explosion energy E I,T ranges from 1.87 to 32 kt TNT.  相似文献   

15.
Production parameters of surface phytoplankton were measured along three transects: La Manche-Cape Town (I); Cape Town-54°S (II); 0°-49°W (along 54°S) (III). The Canary upwelling waters were most productive along transect I, where the surface chlorophyll a (Chl 0) and the surface primary production (PP 0) were as high as 4.3 mg/m3 and 173 mg C/m3 per day, respectively. Mosaic patterns in the distribution of these parameters were recorded in the northeastern regions of the South Subtropical Anticyclonic Gyre (Chl 0 = 0.03–0.35 mg/m3; PP 0 = 1.6–12.6 mg C/m3 per day). Along transect II, the average twofold southward increase in Chl 0 (from 0.2 to 0.4 mg/m3) and the concurrent decline of the phytoplankton assimilation activity ( AN 0) resulted in deviations from typical latitudinal changes inPP 0. At most sites, PP 0 values varied between 6 and 15 mg C/m3 per day. Negligible changes in Chl 0 (0.36–0.85 mg/m3), PP 0 (8–19 mg C/m3 per day), and AN 0 (0.7–1.6 mg C/mg chl a per hour) were registered for the oceanic waters along transect III. Along all the transects, PP 0 depended on Chl 0 to a greater extent than AN 0. The values of the latter parameter were largely determined by the water temperature and showed a slight correlation with the insolation. Along transect II, the integrated primary production (PP int) and the layer-integrated chlorophyll a in the upper 200 m (Chl 0–200) generally varied from 180 to 360 mg C/m2 per day and from 30 to 70 mg/m2, respectively. In the Polar Front region, an increase in Chl 0–200, PP int, Chl 0, and PP 0 up to respective values of 190 mg/m2, 520 mg C/m2 per day, 1.2 mg/m3, and 32 mg C/m3 per day was observed. A comparison of the water column (0–100 m) stability with the vertical distribution of the primary production and chlorophyll content along transect II implies that the thick (>100 m) upper mixed layer (UML) formed in response to the strong water cooling and wind forcing was largely responsible for the limited primary production in the Subantarctic and Antarctic regions. The large UML thickness resulted in an intense removal of plant cells from the photosynthetic layer and light starvation of a significant (up to 60%) part of the phytoplankton community.  相似文献   

16.
太平洋褶柔鱼为大洋性经济鱼种,具有一年生命周期,其资源变动受气候和海洋环境条件的显著影响。本研究根据日本提供的2003-2012年太平洋褶柔鱼冬生群体的渔业统计数据,结合产卵场环境数据以及尼诺指数ONI(定义为Niño 3.4区海表温度距平值),分析不同气候条件下(厄尔尼诺和拉尼娜)太平洋褶柔鱼冬生群体产卵场海表温度(SST)、叶绿素a(Chl-a)浓度以及适宜产卵面积(SSA)的变动情况及对其资源丰度(CPUE)的影响。结果表明,太平洋褶柔鱼冬生群体产卵场SST、Chl-a浓度和SSA具有明显的季节性变化。相关分析表明,各年CPUE与Chl-a浓度以及SSA具有显著的正相关关系(p<0.05),但与SST相关性不显著(p>0.05)。此外,厄尔尼诺和拉尼娜事件通过驱动太平洋褶柔鱼冬生群体产卵场SSA和关键海域(25°-29°N,122.5°-130.5°E)内的Chl-a空间分布和大小变化,从而改变其资源丰度,但影响作用随各异常事件的强度不同而变化,具体表现为:发生弱强度厄尔尼诺事件时,产卵场SSA较高,Chl-a浓度处于较低水平,导致资源补充量处于较低水平,CPUE降低;发生中等强度厄尔尼诺事件时,产卵场SSA较低,但Chl-a浓度处于较高水平,导致资源补充量增加,CPUE处于上升水平;发生中等强度拉尼娜事件时,产卵场SSA和Chl-a浓度均处于较高水平,资源补充量显著增加,CPUE显著升高。研究表明,厄尔尼诺和拉尼娜事件对太平洋褶柔鱼冬生群体产卵场摄食孵化环境和资源丰度变动具有显著影响。  相似文献   

17.
To date no analytical solution of the pile ultimate lateral capacity for the general cφ soil has been obtained. In the present study, a new dimensionless embedded ratio was proposed and the analytical solutions of ultimate lateral capacity and rotation center of rigid pile in cφ soils were obtained. The results showed that both the dimensionless ultimate lateral capacity and dimensionless rotation center were the univariate functions of the embedded ratio. Also, the ultimate lateral capacity in the cφ soil was the combination of the ultimate lateral capacity (f c ) in the clay, and the ultimate lateral capacity (f φ ) in the sand. Therefore, the Broms chart for clay, solution for clay (φ=0) put forward by Poulos and Davis, solution for sand (c=0) obtained by Petrasovits and Awad, and Kondner’s ultimate bending moment were all proven to be the special cases of the general solution in the present study. A comparison of the field and laboratory tests in 93 cases showed that the average ratios of the theoretical values to the experimental value ranged from 0.85 to 1.15. Also, the theoretical values displayed a good agreement with the test values.  相似文献   

18.
Single Gaussian wave groups with different initial wave steepness ε_0 and width N are produced in laboratory in finite depth to study the nonlinear evolution, the extreme events and breaking. The results show that wave groups with larger ε_0 will evolve to be several envelope solitons(short wave groups). By analyzing geometric parameters, a break in the evolution of the wave elevation and asymmetric parameters after extreme wave may be an indicator for the inception of refocus and the maximal wave moving to the middle, namely, wave down-shift occurs. The analysis of the surface elevations with HHT(Hilbert-Huang Transform), which presents the concrete local variation of energy in time and frequency can be exhibited clearly, reveals that the higher frequency components play a major role in forming the extreme event and the contribution to the nonlinearity. Instantaneous energy and frequency in the vicinity of the extreme wave are also examined locally. For spilling breakers, the energy residing in the whole wave front dissipates much more due to breaking, while the energy in the rear of wave crest loses little, and the intra-wave frequency modulation increases as focus. It illustrates that the maximal first order instantaneous frequency f_1 and the largest crest tend to emerge at the same time after extreme wave when significant energy dissipation happens, and vice versa. In addition, it shows that there is no obvious relation of the CDN(combined degree of nonlinearity) to the wave breaking for the single Gaussian wave group in finite water depth.  相似文献   

19.
The estimated characteristics of the atmospheric boundary layer, obtained by the simulation of wind wave fields using three versions of the WAM numerical model are compared with the well-known empirical dependences of drag coefficient C d on wind speed U 10 and wave age A, as well as with the dependence of dimensionless roughness height z n on inverse wave age u*/с р. Calculations carried out for several years in the areas of the Pacific and Indian oceans, based on the ERA-interim and CFSR wind reanalyses have shown good agreement between the model and empirical dependences C d (U 10) and C d (A). The range of estimated variability for z n (u*/с р ) has been found to be significantly less than empirical. It has been also found that estimated values of wind speed U 10W (t) are overestimated from 5 to 10% in all versions of WAM models compared with the input wind reanalysis U 10R (t) at the moments of appearance maximum values of wind U 10R (t). The reasons for the established features of the WAM model and their dependence on the model version are discussed.  相似文献   

20.
Self-aeration in high-speed free surface flows occurs commonly and is of interest to ocean engineering, hydraulic engineering, and environmental engineering. For two-phase air–water flows, macroscopic air–water flow properties develop gradually, accompanied by the change of microscopic air–water structures. In this article, representational experimental studies on macroscopic and microscopic characteristics of self-aerated open-channel flows are summarized and compared. The isolated effect of the flow Reynolds number and air quantity on the differences in air count rate and chord size are analyzed and discussed. The results show that the characterized flow depth y50, affected by the turbulence transfer, is a specific criterion to distinguish the interior air–water structure development. Two distinct linear trends of self-aeration are found, depending on the y50/y90 variation with a breaking point at Cmean = 0.50. The air count rate and size scale in self-aerated flows are affected by the air quantity of self-aerated flows, even with identical flow Reynolds numbers. Thus, a specific parameter is proposed to assess the air–water structures and a series of self-similarity relationships in self-aeration properties are obtained. The link between macroscopic and microscopic air–water properties results in significant scale effect on air–water structures in self-aerated flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号