首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenolic acids are found in natural plants, such as caffeic acid, rosmarinic acid, and chlorogenic acid. They have long been used as pharmacological actives, owing to their anti-inflammatory and antioxidant activities. Cryptochlorogenic acid (CCGA) is a special isomer of chlorogenic acid; the pharmacological effects and related molecular mechanisms of CCGA have been poorly reported. In the present study, the antioxidant and anti-inflammatory effects of CCGA in RAW 264.7 macrophages and the underlying mechanisms were investigated. The results revealed that CCGA dose-dependently inhibited LPS-induced production of NO, TNF-α, and IL-6 and blocked iNOS, COX-2, TNF-α, and IL-6 expressions. CCGA also significantly increased the GSH/GSSG ratio and SOD activity and reduced the MDA level. Moreover, CCGA suppressed the nuclear translocation of NF-κB by hindering the phosphorylation of IκB kinase (IKK) and degrading IκB. It also downregulated the phosphorylation of MAPKs. Our results indicated that CCGA significantly inhibited NF-κB activation by controlling the expression of pro-inflammatory factors and promoting the nuclear transfer of Nrf2. In conclusion, CCGA could attenuate LPS-induced inflammatory symptoms by modulating NF-κB/MAPK signaling cascades and inhibit LPS-induced oxidative stress via Nrf2 nuclear translocation.  相似文献   

2.
BackgroundThe endotoxin tolerance (ET) of Kupffer cells (KCs) is an important protective mechanism for limiting endotoxin shock. As a key anti-inflammatory molecule, the roles and mechanism of Forkhead protein O3a (Foxo3a) in ET of KCs are not yet well understood.MethodsET and nonendotoxin tolerance (NET) KCs models were established in vitro and in vivo. The levels of cytokines were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression and phosphorylation levels were detected by western blotting (WB). Changes in the localization of nuclear factor kappa B (NF-κB) and Foxo3a in KCs were detected by immunofluorescence assays. KCs apoptosis and survival rates were detected by flow cytometry and an automatic cell counter, respectively.ResultsThe activity of NF-κB and the levels of p-Foxo3a and tumor necrosis factor (TNF-α) in the ET group were significantly lower than those in the NET group, while the levels of Foxo3a and interleukin 10 (IL-10) in the ET group were significantly higher than those in the NET group. Overexpression of Foxo3a or the use of a phosphatidylinositol-3-hydroxykinase (PI3K) inhibitor suppressed the activation of NF-κB by decreasing the levels of p-Foxo3a by inhibiting the activity of PI3K/AKT, which improved the tolerance of KCs and mice to endotoxin. In contrast, silencing Foxo3a or the use of a PI3K agonist reduced the tolerance of KCs and mice to endotoxin. The PI3K agonist counteracted the inhibitory effects of Foxo3a overexpression on NF-κB, impairing the tolerance of KCs to endotoxin.ConclusionsThe on-off action of Foxo3a in the ET of KCs depends on the PI3K/AKT pathway.  相似文献   

3.
Inflammatory bowel disease (IBD) is a chronic and recurrent intestinal inflammatory disease with high risks for colorectal cancer and extremely affect people's health. Secoisolariciresinol diglucoside (SDG), a major component of lignans, exerts anti-inflammatory effects against digestive system diseases through a multi-target mechanism. However, the effect of SDG on IBD is not clear. In the present study, we aimed to investigate the effects of SDG on IBD and elucidate the underlying mechanism. The Dextran Sulfate Sodium Salt (DSS)-induced colitis model and lipopolysaccharide (LPS) stimulated RAW264.7 mouse macrophages cellular inflammation model were established. Morphological and pathological changes in colitis tissue in mice were observed by HE staining. Macrophage infiltration was detected by flow cytometry. The levels of nucleotide oligomerization domain-like receptor protein 1 (NLRP1) inflammasome complexes, nuclear factor-kappa B (NF-κB) and inflammatory cytokines were determined using quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The results showed that SDG significantly attenuated the pathological severity and the number of macrophage infiltration of colitis in mice. Besides, SDG decreased the levels of inflammatory cytokines (IL-1β, IL-18 and TNF-α) and inhibited the activation of the NLRP1 inflammasome in DSS-induced colitis mice and RAW264.7 mouse macrophages. Moreover, the inhibitory effect of SDG was partly dependent on the disruption of NF-κB activation. Our results indicated that SDG relieves colitis by inhibiting NLRP1 inflammasome, and partly dependent on the disruption of NF-κB activation. Therefore, SDG may be a potential treatment option for IBD.  相似文献   

4.
BackgroundThe therapeutic utility of the effective chemotherapeutic agent cisplatin is hampered by its nephrotoxic effect. We aimed from the current study to examine the possible protective effects of amlodipine through gamma-glutamyl transpeptidase (GGT) enzyme inhibition against cisplatin nephrotoxicity.MethodsAmlodipine (5 mg/kg, po) was administered to rats for 14 successive days. On the 10th day, nephrotoxicity was induced by a single dose of cisplatin (6.5 mg/kg, ip). On the last day, blood samples were collected for estimation of kidney function, while kidney samples were used for determination of GGT activity, oxidative stress, inflammatory, and apoptotic markers, along with histopathological evaluation.ResultsAmlodipine alleviated renal injury that was manifested by significantly diminished serum creatinine and blood urea nitrogen levels, compared to cisplatin group. Amlodipine inhibited GGT enzyme, which participates in the metabolism of extracellular glutathione (GSH) and platinum-GSH-conjugates to a reactive toxic thiol. Besides, amlodipine diminished mRNA expression of NADPH oxidase in the kidney, while enhanced the anti-oxidant defense by activating Nrf2/HO-1 signaling. Additionally, it showed marked anti-inflammatory response by reducing expressions of p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappa B (NF-κB), with subsequent down-regulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and vascular cell adhesion molecule-1 (VCAM-1). Moreover, amlodipine reduced Bax/Bcl-2 ratio and elevated hepatocyte growth factor (HGF), thus favoring renal cell survival.ConclusionsEffective GGT inhibition by amlodipine associated with enhancement of anti-oxidant defense and suppression of inflammatory signaling and apoptosis support our suggestion that amlodipine could replace toxic GGT inhibitors in protection against cisplatin nephrotoxicity.  相似文献   

5.
Toxoplasmosis is a parasitic zoonosis with the highest incidence in humans. Severe lesions due to acute toxoplasmosis have been recorded in the visceral organs including the liver, where hepatocytes and Kupffer cells are important innate immune cells. Arctigenin (AG) is a bioactive ingredient of Arctium lappa L. and increasing evidence suggests that AG exhibits anti-oxidant, anti-inflammatory and anti-Toxoplasma gondii (T. gondii) effects. However, the role of AG in acute liver damage induced by T. gondii infection remains unclear. In this study, we analyzed the effects of AG against T. gondii-induced liver damage by establishing an in vitro infection model using a murine liver cell line (NCTC-1469 cells) and an in vivo mouse model with acute T. gondii infection of virulent RH strain. In the current study, AG effectively attenuated hepatocytes apoptosis and inhibited the reproduction of T. gondii. The results of in vitro and in vivo studies showed that AG significantly reduced alanine aminotransferase/aspartate aminotransferase activities and lessened pathological damage of liver. Moreover, AG suppressed T. gondii-induced inducible nitric oxide synthase production. AG also attenuated liver inflammation by inhibiting T. gondii-induced activation of the high-mobility group box1/toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-κB) signaling pathway. These findings demonstrated that AG exhibited prominent hepatoprotective activities in toxoplasmic liver injury with anti-inflammatory effects by inhibiting the HMGB1/TLR4/NF-κB signaling axis. Thus, this study provides the basis for the development of new drugs to treat toxoplasmic hepatitis.  相似文献   

6.
7.
Osteoarthritis (OA) is a chronic inflammatory joint disease characterized by degradation of articular cartilage. Ubiquitin-fold modifier 1 (UFM1)-specific ligase 1 (UFL1) is an UFM1 E3 ligase that has been identified as a regulator of inflammatory response. However, the role of UFL1 in OA remains unknown. The aim of the present study was to explore the function of UFL1 in an in vitro OA system in chondrocytes. Our results showed that UFL1 was lowly expressed in both OA articular tissues and chondrocytes with IL-1β induction. Ectopic expression of UFL1 improved cell viability of IL-1β-induced chondrocytes. UFL1 suppressed the production of NO and PGE2, as well the expression levels of iNOS and COX-2 in IL-1β-induced chondrocytes. The IL-1β-induced increases in TNF-α and IL-6 levels were attenuated by UFL1. Ectopic expression of UFL1 inhibited the production of extracellular matrix (ECM) degrading enzymes including matrix metalloproteinase 3 (MMP-3), MMP-13, ADAMTS-4 and ADAMTS-5 in chondrocytes with IL-1β induction. Additionally, UFL1 suppressed IL-1β-induced activation of NF-κB signaling pathway in chondrocytes. In conclusion, these findings indicated that UFL1 exerted protective effect on IL-1β-induced chondrocytes. Thus, UFL1 might be a potential target for the treatment of OA.  相似文献   

8.
9.
ObjectiveIschemic stroke is one of the leading causes of death globally, and inflammation is considered as a vital contributor to the pathophysiology of ischemic stroke. Recently, microRNA-421-3p-derived macrophages is found to promote motor function recovery in spinal cord injury. Here, we explored whether microRNA-421-3p is involved in inflammation responses during cerebral ischemia/reperfusion (I/R) injury and its molecular mechanism.MethodsAn in vivo experimental animal model of intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) and in vitro model of microglial subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) were used. The effects of microRNA-421-3p on cerebral I/R injury and its underlying mechanism were detected by quantitative real-time PCR, western blotting, immunofluorescence staining, RNA immunoprecipitation, flow cytometry, luciferase reporter assay, and bioinformatics analysis.ResultsWe find that microRNA-421-3p is significantly decreased in cerebral I/R injury in vitro and in vivo. Furthermore, overexpression of microRNA-421-3p evidently suppresses pro-inflammatory factor expressions and inhibits NF-κB p65 protein expression and nuclear translocation in BV2 microglia cells treated with OGD/R. However, microRNA-421-3p neither promotes p65 mRNA expression, nor affects p65 mRNA or protein stability. Moreover, we find the m6A ‘reader’ protein YTH domain family protein 1 (YTHDF1) is the specific target of microRNA-421-3p, and YTHDF1 specifically binds to the m6a site of p65 mRNA to promote its translation.ConclusionmicroRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting YTHDF1 to inhibit p65 mRNA translation. These findings provide novel insights into understanding the molecular pathogenesis of cerebral I/R injury.  相似文献   

10.
Allergic contact dermatitis (ACD), characterized predominantly by erythema, vesiculation, and pruritus, is a T cell-mediated skin inflammatory condition. Among immune cells involved in ACD, mast cells (MCs) play an essential role in its pathogenesis. As an inhibitor of proinflammatory IL-1 family members, interleukin 37 (IL-37) has been shown to ameliorate inflammatory responses in various allergic diseases. In this study, we assessed the immunomodulatory effect of IL-37 on allergic inflammation using a 2,4-dinitrofluorobenzene (DNFB)-induced ACD rat model and isolated rat peritoneal mast cells (RPMCs). Systematic application of IL-37 significantly relieved ear swelling, reduced inflammatory cell infiltration, decreased inflammatory cytokine production (TNF-α, IL-1β, IFN-γ, and IL-13), inhibited MC recruitment, lowered IgE levels, and reduced IL-33 production in the local ear tissues with DNFB challenge. Additionally, RPMCs isolated from ACD rats with IL-37 intervention showed downregulation of IL-6, TNF-α, IL-13, and MCP-1 production following IL-33 stimulation, and reduction of β-hexosaminidase and histamine release under DNP-IgE/HSA treatment. Moreover, IL-37 treatment also significantly restrained NF-κB activation and P38 phosphorylation in ACD RPMCs. SIS3, a specific Smad3 inhibitor, abolished the suppressive effects of IL-37 on MC-mediated allergic inflammation, suggesting the participation of Smad3 in the anti-ACD effect of IL-37. These findings indicated that IL-37 protects against IL-33-regulated MC inflammatory responses via inhibition of NF-κB and P38 MAPK activation accompanying the regulation of Smad3 in rats with ACD.  相似文献   

11.
Macrophages are the most abundant immune cells in the lung, which play an important role in COPD. The anti-inflammatory and anti-oxidation of ergosterol are well documented. However, the effect of ergosterol on macrophage polarization has not been studied. The objective of this work was to investigate the effect of ergosterol on macrophage polarization in CSE-induced RAW264.7 cells and Sprague-Dawley (SD) rats COPD model. Our results demonstrate that CSE-induced macrophages tend to the M1 polarization via increasing ROS, IL-6 and TNF-α, as well as increasing MMP-9 to destroy the lung construction in both RAW264.7 cells and SD rats. However, treatment of RAW264.7 cells and SD rats with ergosterol inhibited CSE-induced inflammatory by decreasing ROS, IL-6 and TNF-α, and increasing IL-10 and TGF-β, shuffling the dynamic polarization of macrophages from M1 to M2 both in vitro and in vivo. Ergosterol also decreased the expression of M1 marker CD40, while increased that of M2 marker CD163. Moreover, ergosterol improved the lung characters in rats by decreasing MMP-9. Furthermore, ergosterol elevated HDAC3 activation and suppressed P300/CBP and PCAF activation as well as acetyl NF-κB/p65 and IKKβ, demonstrating that HDAC3 deacetylation was involved in the effect of ergosterol on macrophage polarization. These results also provide a proof in immunoregulation of ergosterol for therapeutic effects of cultured C. sinensis on COPD patients.  相似文献   

12.
《Saudi Pharmaceutical Journal》2022,30(10):1405-1417
BackgroundThe therapeutic activity of Glyceryl trinitrate (GTN) is mainly regulated by liberating nitric oxide (NO) and reactive nitrogen species (RNS). During this biotransformation, oxidative stress and lipid peroxidation inside the red blood cells (RBCs) occur. Hemoglobin tightly binds to NO forming methemoglobin altering the erythrocytic antioxidant defense system.AimThe principal objective of our research is to show the ameliorating effect of l-ascorbic acid for the deleterious effects of chronic administration of nitrovasodilator drugs used in cardiovascular diseases such as oxidative stresses and tolerance.MethodWe studied some biochemical parameters for the oxidative stress using groups of high sucrose/fat (HSF) diet Wistar male rats chronically orally administered different concentrations of Isosorbide-5-mononitrate (ISMN) 0.3 mg/kg, 0.6 mg/kg and 1.2 mg/kg. Afterwards, we evaluated the role of l-ascorbic acid against these biochemical changes in cardiac tissues.ResultsChronic treatment with organic nitrates caused elevated serum levels of lipid peroxidation, hemoglobin derivatives as methemoglobin and carboxyhemoglobin, rate of hemoglobin autoxidation, the cellular levels of the pro-inflammatory cytokines marker (NF-κB) and apoptosis markers (caspase-3) in the myocardium muscles in a dose-dependent manner. Meanwhile, such exposure caused a decline in the enzymatic effect of SOD, GSH and CAT accompanied by a decrease in the level of mitochondrial oxidative stress marker (nrf2) in the myocardium muscles and a decrease in the serum iron and total iron-binding capacity (TIBC) in a dose-dependent manner. Concomitant treatment with l-ascorbic acid significantly diminished these changes for all examined parameters.ConclusionChronic administration of organic nitrates leads to the alteration of the level of oxidative stress factors in the myocardium tissue due to the generation of reactive oxygen species. Using l-ascorbic acid can effectively ameliorate such intoxication to overcome nitrate tolerance.  相似文献   

13.
Emodin (Emo) is a natural plant anthraquinone derivative with a wide spectrum of pharmacological properties, including anticancer, antioxidant, and hepatoprotective activities. Glycosylation of natural anthraquinones with various sugar moieties can affect their physical, chemical, and biological functions. In this study, the potential immunomodulatory activities of Emo and its glycosylated derivative, emodin 8-O-glucoside (E8G), were evaluated and compared using murine macrophage RAW264.7 cells and human monocytic THP-1 cells. The results showed that E8G (20 μM) induced the secretion of TNF-α and IL-6 from RAW264.7 cells more effectively than unglycosylated Emo aglycone, by 4.9- and 1.6-fold, respectively, with no significant cytotoxicity in the concentration range tested (up to 20 μM). E8G (2.5–20 μM) significantly and dose-dependently induced inducible nitric oxide synthase (iNOS) expression by up to 3.2-fold compared to that of untreated control following a remarkable increase in nitric oxide (NO) production. E8G also significantly increased the expression of TLR-2 mRNA and the phosphorylation of MAPKs (JNK and p38). The activation and subsequent nuclear translocation of NF-κB was substantially enhanced upon treatment with E8G (2.5–20 μM). Moreover, E8G markedly induced macrophage-mediated phagocytosis of apoptotic Jurkat T cells. These results demonstrated that E8G far more strongly stimulates the secretion of proinflammatory cytokines, such as TNF-α and IL-6, and NO production from macrophages through upregulation of the TLR-2/MAPK/NF-κB signalling pathway than its nonglycosylated form, Emo aglycone. These results suggest for the first time that E8G may represent a novel immunomodulator, enhancing the early innate immunity.  相似文献   

14.
The neuroinflammatory response induced by microglia plays a vital role in causing secondary brain damage after traumatic brain injury (TBI). Previous studies have found that the improved regulation of activated microglia could reduce neurological damage post-TBI. Phillyrin (Phi) is one of the main active ingredients extracted from the fruits of the medicinal plant Forsythia suspensa (Thunb.) with anti-inflammatory effects. Our study attempted to investigate the effects of phillyrin on microglial activation and neuron damage after TBI. The TBI model was applied to induce brain injury in mice, and neurological scores, brain water content, hematoxylin and eosin staining and Nissl staining were employed to determine the neuroprotective effects of phillyrin. Immunofluorescent staining and western blot analysis were used to detect nuclear factor-kappa B (NF-κB) and peroxisome proliferator–activated receptor gamma (PPARγ) expression and nuclear translocation, and the inflammation-related proteins and mRNAs were assessed by western blot analysis and quantitative real-time PCR. The results revealed that phillyrin not only inhibited the proinflammatory response induced by activated microglia but also attenuated neurological impairment and brain edema in vivo in a mouse TBI model. Additionally, phillyrin suppressed the phosphorylation of NF-κB in microglia after TBI insult. These effects of phillyrin were mostly abolished by the antagonist of PPARγ. Our results reveal that phillyrin could prominently inhibit the inflammation of microglia via the PPARγ signaling pathway, thus leading to potential neuroprotective treatment after traumatic brain injury.  相似文献   

15.
Increasing evidence suggests that infection promotes the initiation and progression of prostate cancer. This study investigated the effects of lipopolysaccharide (LPS), a major component of Gram-negative bacilli, on proliferation, migration and invasion of prostate cancer cells and the protective effects of 1α,25(OH)2D3 (calcitriol). PC-3 and DU145 cells were stimulated with LPS (2.0 μg/mL) in the presence or absence of 1α,25(OH)2D3 (100 nM). Our results shown that 1α,25(OH)2D3 reduced the proportion of S phase cells in LPS-stimulated PC-3 and DU145 cells, and down-regulated the nuclear protein levels of Cyclin D1 and PCNA in LPS-stimulated PC-3 cells. In addition, 1α,25(OH)2D3 inhibited migration and invasion, as determined by wound healing and transwell assay, in LPS-stimulated PC-3 and DU145 cells. Of interest, we observed that 1α,25(OH)2D3 inhibits NF-κB activation and subsequent synthesis and secretion of IL-6 and IL-8 by promoting VDR and NF-κB p65 interaction. Surprisingly, 1α,25(OH)2D3 blocks nuclear translocation of pSTAT3 by promoting physical interaction between VDR and pSTAT3 (Tyr705) in LPS-stimulated PC-3 and DU145 cells. These results suggest that 1α,25(OH)2D3 inhibits LPS-induced proliferation, migration and invasion in prostate cancer cells by directly and indirectly blocking STAT3 signal transduction.  相似文献   

16.
Toxoplasma gondii (T. gondii) is a known neurotropic protozoan that remains in the central nervous system and induces neuropsychiatric diseases in intermediate hosts. Arctigenin (AG) is one of the major bioactive lignans of the fruit Arctium lappa L. and has a broad spectrum of pharmacological activities such as neuroprotective, anti-inflammatory and anti-T. gondii effects. However, the effect of AG against depressive behaviors observed in T. gondii-infected hosts has not yet been clarified. In the present study, we analyzed the effects of AG against T. gondii-induced depressive behaviors in intermediate hosts using a microglia cell line (BV2 cells) and brain tissues of BALB/c mice during the acute phase of infection with the RH strain of T. gondii. AG attenuated microglial activation and neuroinflammation via the Toll-like receptor/nuclear factor-kappa B (NF-κB) and tumor necrosis factor receptor 1/NF-κB signaling pathways, followed by up-regulating the dopamine and 5-hydroxytryptamine levels and inhibiting the depression-like behaviors of hosts. AG also significantly decreased the T. gondii burden in mouse brain tissues. In conclusion, we elucidated the effects and underlying molecular mechanisms of AG against depressive behaviors induced by T. gondii infection.  相似文献   

17.
Fulminant hepatitis (FH), characterized by overwhelmed inflammation and massive hepatocyte apoptosis, is a life-threatening and high mortality rate. Gastrodin (GTD), a phenolic glucoside extracted from Gastrodiaelata Blume, exerts anti-apoptosis, and anti-inflammatory activities. In the present study, we aimed to evaluate whether GTD treatment could alleviate lipopolysaccharide and d-galactosamine (LPS/GalN)-induced FH in mice and its potential mechanisms. These data suggested that GTD treatment remarkably protected against LPS/GalN-induced FH by enhancing the survival rate of mice, reducing ALT and AST levels, attenuating histopathological changes, and suppressing interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α secretion. In addition, GTD treatment relieved hepatic apoptosis by the regulation of peroxisome proliferator-activated receptors (PPARs), P53 and caspase-3/9. Furthermore, GTD treatment could significantly inhibit inflammation-related signaling pathways activated by LPS/GalN, including the suppression of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) and nuclear factor-kappa B (NF-κB) activation. Importantly, GTD treatment effectively restored but not induced LPS/GalN-reduced the expression of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, as well as the level of pro-autophagy proteins. Taken together, our investigation indicated that GTD played an essential role in liver protection by relieving hepatocyte apoptosis and inflammation reaction, which may be closely involved in the inhibition of NLRP3 inflammasome and NF-κB activation, regulation of apoptosis-related proteins expression, and the recovery of AMPK/ACC/autophagy.  相似文献   

18.
19.
MicroRNAs (miRNAs) have emerged as critical modulators involved in the regulation of airway remodeling in asthma. MicroRNA-182-5p (miR-182-5p) has been reported as a key miRNA in regulating the proliferation and migration of various cell types, and its dysfunction contributes is implicated in a wide range of pathological processes. Yet, it remains unknown whether miR-182-5p modulates the proliferation and migration of airway smooth muscle (ASM) cells during asthma. In the present study, we aimed to determine the potential role of miR-182-5p in regulating the proliferation and migration of ASM cells induced by tumor necrosis factor (TNF)-α in vitro. We found that TNF-α stimulation markedly reduced miR-182-5p expression in ASM cells. Gain-of-function experiments showed that miR-182-5p upregulation suppressed the proliferation and migration of ASM cells induced by TNF-α. By contrast, miR-182-5p inhibition had the opposite effect. Notably, tripartite motif 8 (TRIM8) was identified as a target gene of miR-182-5p. TRIM8 expression was induced by TNF-α stimulation, and TRIM8 knockdown markedly impeded TNF-α-induced ASM cell proliferation and migration. Moreover, miR-182-5p overexpression or TRIM8 knockdown significantly downregulated the activation of nuclear factor-κB (NF-κB) induced by TNF-α. However, TRIM8 restoration partially reversed the miR-182-5p-mediated inhibitory effect on TNF-α-induced ASM cell proliferation and migration. In conclusion, our study indicates that miR-182-5p restricts TNF-α-induced ASM cell proliferation and migration through downregulation of NF-κB activation via targeting TRIM8. The results of our study highlight the potential importance of the miR-182-5p/TRIM8/NF-κB axis in the airway remodeling of asthma.  相似文献   

20.
ObjectivesIn the present study, we aimed to assess whether adrenocorticotropic hormone (ACTH) could protect the podocytes from adriamycin (ADR)-induced injury by stimulating B lymphocytes to secrete the associated cytokines.MethodsProliferation assay was used to assess the proliferation and activity of podocytes. Enzyme-linked immunosorbent assay was used to examine the secretion of IL-10 and IL-4. TUNEL apoptosis detection kit was used to detect the apoptosis of podocytes. Real-time PCR and Western blotting analysis were used to examine the expressions of nephrin and podocin at the mRNA and protein levels.ResultsCompared with the normal control group, the podocyte proliferation of ADR group was significantly inhibited. However, compared with the ADR group, the podocyte proliferation of the supernatant (1 µg/L, 10 µg/L or 100 µg/L ACTH4-10) + ADR groups was generally increased, and the pro-proliferative effect of the supernatant containing 10 µg/L ACTH4-10 was the highest. Moreover, we found that after B lymphocytes were intervened by 10 µg/L ACTH4-10, the IL-10 level in the cell supernatant was significantly elevated (p < 0.05). When anti-IL-10R was added, the podocyte proliferation of the supernatant (10 µg/L ACTH4-10) + ADR group was significantly inhibited. Furthermore, the supernatant of B cells stimulated with 10 µg/L ACTH4-10 could better decrease the apoptosis rate of injured podocytes and increase the expressions of nephrin and podocin at the mRNA and protein levels by elevating the secretion of IL-10.ConclusionCompared with ACTH4-10, the supernatant of B cells stimulated with ACTH4-10 could better protect the podocytes from ADR-induced injury by elevating the secretion of IL-10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号