首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Continental Shelf Research》2006,26(17-18):2029-2049
A field experiment was carried out in Massachusetts Bay in August 1998 to assess the role of large-amplitude internal waves (LIWs) in resuspending bottom sediments. The field experiment consisted of a four-element moored array extending from just west of Stellwagen Bank (90-m water depth) across Stellwagen Basin (85- and 50-m water depth) to the coast (24-m water depth). The LIWs were observed in packets of 5–10 waves, had periods of 5–10 min and wavelengths of 200–400 m, and caused downward excursions of the thermocline of as much as 30 m. At the 85-m site, the current measured 1 m above bottom (mab) typically increased from near 0 to 0.2 m/s offshore in a few minutes upon arrival of the LIWs. At the 50-m site, the near-bottom offshore flow measured 6 mab increased from about 0.1 to 0.4–0.6 m/s upon arrival of the LIWs and remained offshore in the bottom layer for 1–2 h. The near-bottom currents associated with the LIWs, in concert with the tidal currents, were directed offshore and sufficient to resuspend the bottom sediments at both the 50- and 85-m sites. When LIWs are present, they may resuspend sediments for as long as 5 hours each tidal cycle as they travel westward across Stellwagen Basin. At 85-m water depth, resuspension associated with LIWs is estimated to occur for about 0.4 days each summer, about the same amount of time as caused by surface waves.  相似文献   

2.
A three-dimensional coupled hydrodynamic-sediment transport model for the Texas-Louisiana continental shelf was developed using the Regional Ocean Modeling System (ROMS) and used to represent fluvial sediment transport and deposition for the year 1993. The model included water and sediment discharge from the Mississippi River and Atchafalaya Bay, seabed resuspension, and suspended transport by currents. Input wave properties were provided by the Simulating WAves Nearshore (SWAN) model so that ROMS could estimate wave-driven bed stresses, critical to shallow-water sediment suspension. The model used temporally variable but spatially uniform winds, spatially variable seabed grain size distributions, and six sediment tracers from rivers and seabed.At the end of the year 1993, much of the modeled fluvial sediment accumulation was localized with deposition focused near sediment sources. Mississippi sediment remained within 20-40 km of the Mississippi Delta. Most Atchafalaya sediment remained landward of the 10-m isobath in the inner-most shelf south of Atchafalaya Bay. Atchafalaya sediment displayed an elongated westward dispersal pattern toward the Chenier Plain, reflecting the importance of wave resuspension and perennially westward depth-averaged currents in the shallow waters (<10 m). Due to relatively high settling velocities assumed for sediment from the Mississippi River as well as the shallowness of the shelf south of Atchafalaya Bay, most sediment traveled only a short distance before initial deposition. Little fluvial sediment could be transported into the vicinity of the “Dead Zone” (low-oxygen area) within a seasonal-annual timeframe. Near the Mississippi Delta and Atchafalaya Bay, alongshore sediment-transport fluxes always exceeded cross-shore fluxes. Estimated cumulative sediment fluxes next to Atchafalaya Bay were episodic and “stepwise-like” compared to the relatively gradual transport around the Mississippi Delta. During a large storm in March 1993, strong winds helped vertically mix the water column over the entire shelf (up to 100-m isobath), and wave shear stress dominated total bed stress. During fair-weather conditions in May 1993, however, the freshwater plumes spread onto a stratified water column, and combined wave-current shear stress only exceeded the threshold for suspending sediment in the inner-most part of the shelf.  相似文献   

3.
Nearshore regions act as an interface between the terrestrial environment and deeper waters. As such, they play important roles in the dispersal of fluvial sediment and the transport of sand to and from the shoreline. This study focused on the nearshore of Poverty Bay, New Zealand, and the processes controlling the dispersal of sediment from the main source, the Waipaoa River. Hydrodynamics and sediment-transport in water shallower than 15 m were observed from April through mid-September 2006. This deployment afforded observations during 3-4 periods of elevated river discharge and 5 dry storms.Similar wind, river discharge, wave, current, and turbidity patterns were characterized during three of the wet storms. At the beginning of each event, winds blew shoreward, increasing wave heights to 2-3 m within Poverty Bay. As the cyclonic storms moved through the system the winds reversed direction and became seaward, reducing the local wave height and orbital velocity while river discharge remained elevated. At these times, high river discharge and relatively small waves enabled fluvially derived suspended sediment to deposit in shallow water. Altimetry measurements indicated that at least 7 cm was deposited at a 15 m deep site during a single discharge event. Turbidity and seabed observations showed this deposition to be removed, however, as large swell waves from the Southern Ocean triggered resuspension of the material within three weeks of deposition. Consequently, two periods of dispersal were associated with each discharge pulse, one coinciding with fluvial delivery, and a second driven by wave resuspension a few weeks later. These observations of nearfield sediment deposition contradict current hypotheses of very limited sediment deposition in shallow water offshore of small mountainous rivers when floods and high-energy, large wave and fast current, oceanic conditions coincide.Consistently shoreward near-bed currents, observed along the 10 m isobath of Poverty Bay, were attributed to a combination of estuarine circulation, Stokes drift, and wind driven upwelling. Velocities measured at the 15 m isobath, however, were directed more alongshore and diverged from those at the 10 m isobath. The divergence in the currents observed at the 10 and 15 m locations seemed to facilitate segregation of coarse and fine sediment, with sand transported near-bed toward the beach, while suspended silts and clays were exported to deeper water.  相似文献   

4.
The Charleston, South Carolina Ocean Dredged Material Disposal Site (ODMDS) has been heavily utilized as a disposal site for dredged material resulting from maintenance and channel deepening in the Charleston Harbor. Continuous monitoring by the South Carolina Department of Natural Resources at the ODMDS has indicated the presence of fine-grained sediment within the monitoring zones. However, since the Charleston Harbor is formed by the conjunction of three rivers, it has been suggested that some of the fine-grained sediment surrounding the ODMDS could be due to river transport rather than solely by disposal activities. In order to trace the outflow of sediment from the harbor, natural and man-made isotopes were utilized. (7)Be (natural cosmogenic isotope) and (137)Cs (man-made isotope) are often associated with estuarine sediments. Both isotopes were used as tracers in an attempt to determine the extent of density driven sediment flow from the Charleston Harbor. (7)Be was detected in many of the offshore sampling stations indicating a direct correlation to the harbor. (137)Cs was only found in one sediment trap sample offshore, but none the less indicated some transport from the harbor. Further study for utilizing isotopic tracers in determining offshore sediment transport is still being conducted at the disposal site. It is anticipated that further (7)Be and (137)Cs isotopic monitoring offshore Charleston will aid in determining the role that tidal and density driven sediments play in the sediment budgets at the hard bottom reef sites.  相似文献   

5.
Environmental parameters and gross sedimentation rates (GSR) were monitored at a fixed site located in the Bay of Banyuls-sur-Mer (NW Mediterranean), between March 1997 and April 1998, together with the main biochemical characteristics of both sedimenting and sedimented particulate organic matter (POM). Three storms which occurred during this time period resulted in natural sediment resuspension. This is indicated by the corresponding increase in GSR and a decrease in the enzymatically hydrolysable amino acids/totally hydrolysable amino acids ratio (EHAA/THAA), within the sedimenting POM. Only the strongest storm resulted in (1) a transitory increase in fine-grained particles, (2) concomitant increases in organic carbon, carbohydrates, lipids and THAA, and (3) a decrease in the EHAA/THAA ratio in surficial sediments. For most of the assayed parameters, the values recorded after the December 1997 storm corresponded to extremes for the whole period under study. This emphasises the role of storms in controlling the characteristics of sedimented and sedimenting POM.Ten sediment types, with contrasting biochemical characteristics, were selected for experiments; these were based on the results of the monitoring survey and were used during adsorption and absorption experiments involving 14C tetrachlorobiphenyl (TCB). Adsorption rates differed significantly between the sediment types, but did not correlate with any of the assayed biochemical parameters. Absorption efficiency by the mussel Mytilus galloprovincialis also differed between the sediment types; it correlated positively with all the assayed biochemical parameters, except lipids. Comparison between the magnitudes of the increase in GSR, together with the decrease in absorption efficiency during resuspension events, suggests that resuspension tends to enhance the transfer of organic pollutants in the benthic food chain.  相似文献   

6.
太湖沉积物再悬浮模拟方法   总被引:19,自引:3,他引:16  
由于风浪对浅水湖泊底泥的强烈扰动作用,底泥再悬浮的生态效应研究成为目前国际研究热点之一.但方法的缺乏极大地限制了有关底泥再悬浮环境效应的深入研究.本研究应用一种新的沉积物再悬浮装置,模拟了太湖南部长兜港水域不同风浪影响下悬浮物的垂向分布,获得水柱总悬浮物量(T)与扰动频率(n)的定量关系:T=19.77×exp(n/2.61)-71.7.结合现场实测风情下的水柱总悬浮物量,建立了室内水动力条件、水柱总悬浮物量和现场风情的定量关系.研究2004年10月至2005年10月太湖全年代表性小风、中风及大风与再悬浮装置的扰动频率对应关系,估算了小风、中风和大风常规风情引起的总悬浮物量分别为159、230、425 g/m2.结果表明,模拟获得的太湖悬浮物垂向分布规律与现场状况较为接近,是目前较为适用的浅水水体沉积物再悬浮模拟方法.  相似文献   

7.
The internal sediment release is a key factor controlling eutrophication processes in large,shallow lakes.Sediment resuspension is associated with the wave and current induced shear stress in large,shallow lakes.The current study investigated the wind field impacts on sediment resuspension from the bottom at Meiliang Bay of large,shallow Lake Taihu.The impacts of the wind field on the wave,current,and wave-current combined shear stresses were calculated.The critical wind speed range was 4–6 m/s after which wave and current shear stress started to increase abruptly,and onshore wind directions were found to be mainly responsible for greater shear stress at the bottom of Lake Taihu.A second order polynomial fitting correlation was found between wave(R^2 0.4756)and current(R^2 0.4466)shear stresses with wind speed.Wave shear stress accounted for 92.5% of the total shear stress at Meiliang Bay.The critical wave shear stress and critical total shear stress were 0.13 N/m^2 for sediment resuspension whereas the current shear stress was 0.019 N/m^2 after which suspended sediment concentrations(SSC)increased abruptly.A second order polynomial fitting correlation was found between wave(R^2 0.739),current(R^2 0.6264),and total shear stress(R^2 0.7394)with SSC concentrations at Meiliang Bay of Lake Taihu.The sediment resuspension rate was 120 to 738 g/m^2/d during 4–6 m/s onshore winds while offshore winds contributed ≥ 200 g/m^2/d.The study results reveal the driving mechanism for understanding the role of the wind field in sediment resuspension while considering wind speed and direction as control parameters to define wave and current shear stresses.  相似文献   

8.
The Massachusetts Water Resources Authority (MWRA) conducts monitoring to address concerns related to the 2000 diversion of secondarily treated effluent discharge into Massachusetts Bay. Baseline data (1992-2000) showed multiple regions defined by physical and chemical composition. Near the Massachusetts Bay outfall, there is a series of heterogeneous sediments in relatively close proximity to the primary historic source of contaminants (Boston Harbor). Farfield sediments exhibited greater compositional definition from one another, which was attributed to the greater spatial separation of the sampling locations. Factors that influence contaminant variability include local and distributed sources, and are primarily related to gradients in depositional environments. Post-diversion sediment data suggest that 4 years of treated effluent discharge has not increased contaminant concentrations to the bay system. However, abundance of the sewage tracer, Clostridium perfringens, has increased variably in sediments located within 2 km of the outfall, providing a distinct effluent signal near the outfall.  相似文献   

9.
Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.  相似文献   

10.
Caffeine in Boston Harbor seawater   总被引:1,自引:0,他引:1  
Caffeine has been detected in Boston Harbor seawater with concentrations ranging from 140 to 1600 ng l(-1), and in Massachusetts Bay seawater at concentrations from 5.2 to 71 ng l(-1). Sources of caffeine appear to be anthropogenic with higher concentrations in the seawater of Boston's inner harbor and in freshwater sources to the harbor. Charles River water and Deer Island sewage treatment plant effluent, the two major sources of freshwater to the harbor, contained 370 and 6700 ng l(-1) of caffeine, respectively, in 1998. Sewage influent and effluent concentrations appear to be consistent with consumption estimates of caffeinated beverages for the Boston area and total organic carbon removal targets for treated sewage. Caffeine was inversely correlated to salinity in a transect from the mouth of Boston Harbor to Stellwagen Basin, indicating it may be a useful chemical tracer of anthropogenic inputs to marine systems.  相似文献   

11.
An experimental and theoretical identification of hydrodynamic equilibrium for sediment transport and bed response to wave motion are considered. The comparison between calculations and the results of laboratory experiments indicates the linear relation between sediment transport rate and the thickness zm of bed layer in which sediments are in apparent rectilinear motion. This linear relationship allows to use the first order “upwind” numerical scheme of FDM ensuring an accurate solution of equation for changes in bed morphology. However, it is necessary to carry out a decomposition of the sediment transport into transport in onshore direction during wave crest and offshore direction during wave trough. Further, the shape of bed erosion in response to sediment transport coincides with the trapezoid envelope or with part of it, when some sediments still remain within it. Bed erosion area is equal to the one of a rectangle with thickness znm.  相似文献   

12.
13.
In 2007/08, a study was undertaken on the sediment dynamics in shallow Lake Markermeer (the Netherlands). Firstly, sediment characteristics were determined at 49 sites in the lake. Parameters such as median grain size and loss on ignition showed a spatial as well as water depth related pattern, indicating wind-induced sediment transport. Highly significant correlations were found between all sediment parameters. Lake Markermeer sediment dynamics were investigated in a sediment trap field survey at two permanent stations in the lake. Sediment yields, virtually all coming from sediment resuspension, were significantly correlated with average wind speeds, though periods of extreme winds also played a role. Sediment resuspension rates for Lake Markermeer were high, viz. on average ca. 1,000 g m−2 day−1. The highly dynamic nature of Lake Markermeer sediments must be due to the overall shallowness of the lake, together with its large surface area (dynamic ratio = [√(area)]/[average depth] = 7.5); wind-induced waves and currents will impact most of the lake’s sediment bed. Indeed, near-bed currents can easily reach values >10 cm/s. Measurements of the thickness of the settled “mud” layer, as well as 137Cs dating, showed that long-term deposition only takes place in the deeper SE area of the lake. Finally, lake sediment dynamics were investigated in preliminary laboratory experiments in a small “micro-flume”, applying increasing water currents onto five Lake Markermeer sediments. Sediment resuspension started off at 0.5–0.7 cm/s and showed a strongly exponential behaviour with respect to these currents.  相似文献   

14.
Georges Bank is one of the world’s most productive marine ecosystems, but the lack of accurate broad-scale sediment maps presently limits habitat assessments and spatial fisheries management. From 1999 to 2009 we surveyed 36,669 km2 of Georges Bank using 2.8 and 0.6 m2 quadrats viewed with live underwater video (video quadrats). The sediment types observed in 61,604 quadrats were used to map and evaluate spatial structure of local surficial sediment coarseness, dominance, heterogeneity, and maximum size characteristics at a 1 km2 spatial resolution. Sand dominated sediment covered 62% of the study area, and there was a logarithmic decline in coverage by larger, coarser and more heterogeneous sediments. Gravel dominated sediments covered 38% of the study area and were more than twice as abundant as previously estimated. A 12,890 km2 swath of gravel dominated seabed stretched from Cape Cod to northeastern Georges Bank consistent with estimates of prehistoric glacial extent. Within the swath there were 14 large gravel outcrops (15–2743 km2) . This work increases the spatial resolution of sediment information available for habitat assessments and spatial fisheries management on Georges Bank by two orders of magnitude. The four sediment characteristics we evaluated support further detailed investigations of the Bank’s benthos, including the influences of surficial sediment characteristics on species and community distributions, and more spatially accurate estimates of seabed roughness. Finally, this work demonstrates the use of video quadrats as an alternative to traditional grab sampling and modern acoustic sampling for continental shelf-scale mapping.  相似文献   

15.
The Adriatic Sea general circulation model coupled to a third generation wave model SWAN and a sediment transport model was implemented in the Adriatic Sea to study the dynamics of the sediment transport and resuspension in the northern Adriatic Sea (NAS) during the Bora event in January 2001. The bottom boundary layer (BBL) was resolved by the coupled model with high vertical resolution, and the mechanism of the wave–current interaction in the BBL was also represented in the model. The study found that, during the Bora event of 13–17 January 2001, large waves with significant wave height 2 m and period of 5 s were generated by strong winds in the northwestern shelf of the Adriatic where the direction of wave propagation was orthogonal to the current. The combined motion of the wave and current in the BBL increased the bottom stress over the western Adriatic shelf, resulting in stronger sediment resuspension there. Combining stronger bottom resuspension and strong upward vertical flux of resuspended sediments due to turbulent mixing, the model predicted that sediment concentration near the Po River was much higher than that predicted by the model run without wave forcing. The study also shows that wave–current interaction in the BBL reduced the western Adriatic Coastal Currents (WACCs) in the shallower north. It is concluded that wave forcing significantly changed the sediment distributions and increased the total horizontal fluxes over the western shelf. These results signified wave effect on sediment flux and distribution in the NAS, and suggested that waves cannot be neglected in the study of dynamics of sediment transport and resuspension in the shallow coastal seas. By including the tidal forcing in the coupled model, we also examined the effect of tides on the sediment transport dynamics in the NAS.  相似文献   

16.
The Boston Harbor, Massachusetts Bay and Cape Cod Bay system (MBS) is a semi-enclosed coastal embayment located in the western Gulf of Maine (GOM). The strength of the spring bloom in the MBS varies dramatically and the underlying mechanisms are not well understood. It has been hypothesized that the weak (or missing) 1998 spring bloom was due to increased zooplankton grazing pressure after a relatively warmer winter that led to earlier development of zooplankton populations. However, chlorophyll concentrations were low in the entire GOM region during the spring bloom period of 1998. These low chlorophyll waters would enter the MBS by persistent intrusion from the GOM and affect the MBS spring bloom by reducing the accumulation of phytoplankton biomass, suggesting an alternative explanation for the missing bloom. In this study, the influences of the intruding GOM waters on the MBS spring bloom are examined using numerical simulations and observations to compare two contrasting spring blooms (a weak bloom in 1998 versus a strong bloom in 2000). The results indicate that intruding waters from the GOM significantly reduced the strength of spring bloom in 1998, but enhanced the spring bloom in 2000. A theoretical analysis suggests that the influence of the intrusion on the MBS spring bloom is mostly limited to the northern portion of the MBS, and the impact area is determined by local net growth, velocity of intruding flow and horizontal mixing. The intrusion of GOM waters carries the signal of long-term variability in the GOM region and thus may be an important oceanic pathway for climate changes to impact the MBS ecosystem.  相似文献   

17.
1 INTRODUCTION Alluvial streams generally have permeable bed sediments that can admit significant pore water flows. Steady flow of surface water over bed roughness features such as sand waves or pools and riffles can then drive water flow into and out of the shallow subsurface. This is often termed hyporheic exchange, and the subsurface region where mixing between stream and ground waters occurs is the hyporheic zone (Hynes, 1983). The hyporheic zone has been shown to be a critical com…  相似文献   

18.
模拟扰动条件下太湖表层沉积物磷行为的研究   总被引:83,自引:8,他引:75  
利用恒温震荡器构筑的模拟扰动环境,研究了太湖水-沉积物界的磷释放和吸附行为。结果表明:表层沉积物的磷酸盐释放作用在模拟扰动条件下并不十分明显,在低强度的扰动条件下未观察到释放现象,模拟高强度扰动后,出现一个相对较强的释放过程,最大释放时沉积物上覆水浓度约为低强度扰动时的3倍,最大释放时间(Tmax)可能受磷酸盐形态分布的不同而有所差异,相比较而言,磷酸盐的吸附作用表现得十分明显迅速,沉积物上覆水磷酸盐浓度在0.5h后分别0229mg/L和l0.215mg/L下降为0.05mg/L和0.013mg/L,可以看出当上覆水磷酸盐浓度较高时,吸附作用的强度远大于释放作用,在25℃,模拟中等强度(100rpm)的模拟扰动条件下,当初始磷酸盐浓度为1.01mg/L时,梅梁湾和五里湖的表层沉积物吸附容量分别为每克千重吸附0.04mg和0.050mg磷酸盐,这种较高的吸附能力对浅水湖泊的磷酸盐缓冲作用能起到积极作用。  相似文献   

19.
The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river–ocean temporal coherence for four coastal river–shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river–shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river–ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river–shelf systems. Although there are seasonal variations in river–ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river–ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast.  相似文献   

20.
This investigation showed that urban stormwater runoff provides a significant amount of petrogenic material to receiving waters and sediments. A characteristic hydrocarbon ‘fingerprint’ for sediments and particulate matter in the Hillsborough Reservoir, Hillsborough River and upper Hillsborough Bay was provided. Determination of source material for petroleum contamination in stormwater runoff and river sediment indicated that crankcase oil was a primary contributor to sediment hydrocarbon contamination. A comparison of sediment hydrocarbons with hydrocarbons from stormwater runoff showed that the most probable source of crankcase oil-like petrochemicals found in sediment was the stormwater runoff.A comparison of hydrocarbon composition in suspended particulate matter with that of accumulated bottom sediments in the reservoir, river and bay, during a non-storm period and rising tide showed no resuspension and upriver transport of petroleum contaminated bay sediment. No special influence of the bay upon the lower river was observed relative to hydrocarbon tracers, indicating that most contaminated sediment transport was downriver during storm events. Additional studies should be performed over various tidal cycles and storm events incorporating sediment cores, sediment grain size analysis and hydrocarbon characterization at more closely spaced stations near the river mouth to address adequately the question of specific hydrocarbon pollution sources, rate of petroleum influx and persistence of petrochemical contaminants in the sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号