首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
3.
Liver X receptor alpha (LXRalpha) and liver X receptor beta(LXRbeta are oxysterol receptors that regulate multiple target genes involved in cholesterol homeostasis. Recent studies also suggest that the pair of receptors may also be involved in glucose metabolism, inflammation and Alzheimer's disease by regulating critical molecules involved in these pathophysiological processes. Although the prototypic LXR agonists induce liver triglyceride accumulation by regulating the hepatic lipogenesis pathway, it is hoped that a subtype-specific agonist or selective modulators would provide the desired cardioprotection and other benefits without the undesirable concomitant induction of lipogenesis. This review intends to summarize the most recent progress in the field and provide an assessment of LXRs as potential therapeutic targets.  相似文献   

4.
Liver X receptor (LXR) alpha and LXRbeta are nuclear oxysterol receptors whose biological function has so far been elucidated only with respect to cholesterol and lipid metabolism. To expose novel biological roles for LXRs, we performed genome-wide gene expression profiling studies in liver and white and brown adipose tissue from wild-type (LXRalpha(+/+)beta(+/+)) and knockout mice (LXRalpha(-/-)beta(-/-)) treated with a synthetic LXR agonist. By an adapted statistical analysis, we detected 319 genes significantly regulated by LXR agonist treatment in wild-type but not in knockout mice, fulfilling most stringent criteria with an overall confidence of 94%. Down-regulation of essential enzymes of gluconeogenesis in liver could point to possible beneficial effects of LXR agonists in diabetes mellitus. LXR agonist treatment also altered expression of genes involved in steroid hormone synthesis and growth hormone receptor signaling, emphasizing a potential impact on endocrine function. Notably, LXR agonist treatment up-regulated CYP4A10 and CYP4A14 together with cytochrome P450 reductase, indicating a possible enhancement of microsomal lipid peroxidation. In conclusion, these gene expression profiling data identify novel areas of regulation by LXRs and provide a highly valuable basis for further research on the biological functions of these nuclear receptors and the pharmacological characteristics of their ligands.  相似文献   

5.
《Vascular pharmacology》2014,63(3):150-161
Vascular endothelial injury is a major cause of many cardiovascular diseases. The proliferation and migration of endothelial progenitor cells (EPCs) play a pivotal role in endothelial regeneration and repair after vascular injury. Recently, liver X receptor (LXR) activation has been suggested as a potential target for novel therapeutic interventions in the treatment of cardiovascular disease. However, the effects of LXR activation on endothelial regeneration and repair, as well as EPC function, have not been investigated. In the present study, we demonstrate that LXRs, including LXRα and LXRβ, are expressed and functional in rat bone marrow-derived EPCs. Treatment with an LXR agonist, TO901317 (TO) or GW3965 (GW), significantly increased the proliferation and migration of EPCs, as well as Akt and eNOS phosphorylation in EPCs. Moreover, LXR agonist treatment enhanced the expression and secretion of vascular endothelial growth factor in EPCs. LXR agonists accelerated re-endothelialization in injured mouse carotid arteries in vivo. These data confirm that LXR activation may improve EPC function and endothelial regeneration and repair after vascular injury by activating the PI3K/Akt/eNOS pathway. We conclude that LXRs may be attractive targets for drug development in the treatment of cardiovascular diseases associated with vascular injury.  相似文献   

6.
7.
LXRs: new therapeutic targets in atherosclerosis?   总被引:6,自引:0,他引:6  
The liver X receptors (LXRs) are nuclear receptors activated by oxysterols that are now recognized to play an important role in the control of lipid homeostasis. LXRs have been implicated in the regulation of cholesterol and fatty acid metabolism in multiple tissues, including liver and intestine, as well as in macrophages. The importance of these receptors in physiological lipid metabolism suggests that they may also influence the development of metabolic disorders such as hyperlipidemia and atherosclerosis. Strong support for this idea has been provided by recent studies that directly linked LXR activity to the pathogenesis of atherosclerosis. These observations identify the LXR pathway as an attractive target for intervention in cardiovascular disease.  相似文献   

8.
9.
10.
Terpenoids constitute a large family of natural steroids that are widely distributed in plants and insects. We investigated the effects of a series of diterpenes structurally related to acanthoic acid in macrophage functions. We found that diterpenes with different substitutions at the C4 position in ring A are potent activators of liver X receptors (LXRalpha and LXRbeta) in both macrophage cell lines from human and mouse origin and primary murine macrophages. Activation of LXR by these diterpenes was evaluated in transient transfection assays and gene expression analysis of known LXR-target genes, including the cholesterol transporters ABCA1 and ABCG1, the sterol regulatory element-binding protein 1c, and the apoptosis inhibitor of macrophages (Spalpha). Moreover, active diterpenes greatly stimulated cholesterol efflux from macrophages. It is interesting that these diterpenes antagonize inflammatory gene expression mainly through LXR-dependent mechanisms, indicating that these compounds can activate both LXR activation and repression functions. Stimulation of macrophages with acanthoic acid diterpenes induced LXR-target gene expression and cholesterol efflux to similar levels observed with synthetic agonists 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)-amino]propyloxy]phenylacetic acid hydrochloride (GW3965) and N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)-ethyl]phenyl]-benzenesulfonamide [T1317 (T0901317)]. These effects observed in gene expression were deficient in macrophages lacking both LXR isoforms (LXRalpha,beta(-/-)). These results show the ability of certain acanthoic acid diterpenes to activate efficiently both LXRs and suggest that these compounds can exert beneficial effects from a cardiovascular standpoint through LXR-dependent mechanisms.  相似文献   

11.
Liver X receptors (LXRs) are nuclear receptors that play a crucial role in regulating the expression of genes involved in lipid metabolism. Ligand activation of LXRs improves cholesterol homeostasis via multiple coordinated effects, and this function is likely to explain in part the protective effects of LXR activation on atherosclerosis reported in animal models. However, LXR activation may also induce undesirable side effects, such as lipogenesis and hypertriglyceridemia. This review discusses the potential to develop LXR modulators as therapeutic agents for atherosclerosis.  相似文献   

12.
13.
Nuclear receptor crosstalk represents an important mechanism to expand the functions of individual receptors. The liver X receptors (LXR, NR1H2/3), both the α and β isoforms, are nuclear receptors that can be activated by the endogenous oxysterols and other synthetic agonists. LXRs function as cholesterol sensors, which protect mammals from cholesterol overload. LXRs have been shown to regulate the expression of a battery of metabolic genes, especially those involved in lipid metabolism. LXRs have recently been suggested to play a novel role in the regulation of drug metabolism. The constitutive androstane receptor (CAR, NR1I3) is a xenobiotic receptor that regulates the expression of drug-metabolizing enzymes and transporters. Disruption of CAR alters sensitivity to toxins, increasing or decreasing it depending on the compounds. More recently, additional roles for CAR have been discovered. These include the involvement of CAR in lipid metabolism. Mechanistically, CAR forms an intricate regulatory network with other members of the nuclear receptor superfamily, foremost the LXRs, in exerting its effect on lipid metabolism. Retinoid-related orphan receptors (RORs, NR1F1/2/3) have three isoforms, α, β and γ. Recent reports have shown that loss of RORα and/or RORγ can positively or negatively influence the expression of multiple drug-metabolizing enzymes and transporters in the liver. The effects of RORs on expression of drug-metabolizing enzymes were reasoned to be, at least in part, due to the crosstalk with LXR. This review focuses on the CAR-LXR and ROR-LXR crosstalk, and the implications of this crosstalk in drug metabolism and lipid metabolism.  相似文献   

14.
The orphan nuclear receptors FXR and LXRalpha have become challenging targets for the discovery of new therapeutic agents. Bile acids and hydroxysterol intermediates are the respective natural ligands of these two structurally and functionally closely related receptors. Both FXR and LXRalpha; are thought to play a major role in the control of cholesterol catabolism by regulating the expression of cholesterol 7alpha-hydroxylase, the rate limiting enzyme of bile acid synthesis. Reverse cholesterol transport might also be affected by FXR and LXR since they control the expression of PLTP and CETP, two proteins involved in the transfer of phospholipid, cholesterol and cholesteryl esters among plasma lipoproteins. A new class of potent synthetic activators of FXR, the 1,1-bisphosphonate esters, has been discovered which up regulate the Intestinal Bile Acid Binding Protein gene (I-BABP) as demonstrated for chenodeoxycholic acid, however there are no known synthetic activators yet identified for LXRalpha. The evaluation of FXR as a potential target for the development of drugs affecting plasma cholesterol can take advantage of the fact that the activators of FXR (farnesol, bile acids and the 1,1-bisphosphonate esters) have been studied in various in vitro and in vivo models. Administration of chenodeoxycholic acid to animals and man did not result in the increase in plasma cholesterol expected from a decrease in cholesterol 7alpha-hydroxylase expression. Like farnesol, the 1,1-bisphosphonate esters increase the rate of degradation of HMGCoA reductase and have the unexpected property of inducing hypocholesterolemia in normal animals. The natural and synthetic FXR agonists trigger differentiation, inhibit cell proliferation and are potent inducers of apoptosis. The 1,1-bisphosphonate ester SR-45023A (Apomine) is presently being developed as an antineoplastic drug.  相似文献   

15.
16.
The nuclear hormone receptors liver X receptor alpha (LXRalpha) and LXRbeta function as physiological receptors for oxidized cholesterol metabolites (oxysterols) and regulate several aspects of cholesterol and lipid metabolism. Seladin-1 was originally identified as a gene whose expression was down-regulated in regions of the brain associated with Alzheimer's disease. Seladin-1 has been demonstrated to be neuroprotective and was later characterized as 3beta-hydroxysterol-Delta24 reductase (DHCR24), a key enzyme in the cholesterologenic pathway. Seladin-1 has also been shown to regulate lipid raft formation. In a whole genome screen for direct LXRalpha target genes, we identified an LXRalpha occupancy site within the second intron of the Seladin-1/DHCR24 gene. We characterized a novel LXR response element within the second intron of this gene that is able to confer LXR-specific ligand responsiveness to reporter gene in both HepG2 and human embryonic kidney 293 cells. Furthermore, we found that Seladin-1/DHCR24 gene expression is significantly decreased in skin isolated from LXRbeta-null mice. Our data suggest that Seladin-1/DHCR24 is an LXR target gene and that LXR may regulate lipid raft formation.  相似文献   

17.
18.
本文对细胞核受体LXRs(Liver X Receptors)及其天然和人工合成配体的发现进行了系统简介,着重描述了部分激动剂的药理作用,及其作为胆固醇代谢调节因子在疾病动物模型上的初步验证。LXR选择性激动剂可以对动脉粥样硬化和老年痴呆症的延缓及预防起积极作用,有潜力成为临床治疗药品。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号