首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了改善低密度聚乙烯(LDPE)改性沥青低温柔韧性,将增塑剂DOP掺入LDPE改性沥青对其进行增塑。通过改变LDPE、DOP掺量,对沥青进行沥青的常规试验,评价了沥青的针入度体系指标;对不同掺量的改性沥青进行了化学四组分试验与离析试验,研究了两种改性剂对沥青各组分变化影响的规律及复合改性沥青的储存稳定性;基于车辙试验,低温小梁弯曲试验,水稳性能试验,研究了DOP对LDPE改性沥青的路用性能的影响。试验结果表明:根据常规试验结果,推荐LDPE添加量为5%~6%,DOP添加量为2. 5%~3%;LDPE与DOP的加入均会改变沥青的化学四组分所占比例;掺入DOP能提高LDPE改性沥青的储存稳定性; DOP能明显提高LDPE改性沥青混合料的低温性能,同时复合改性沥青混合料也拥有良好的高温稳定性和水稳定性能。  相似文献   

2.
为了分析蒙脱土对SBS改性沥青混合料路用性能的影响,采用蒙脱土对SBS改性沥青进行复合改性,并制备复合改性沥青混合料,开展了车辙试验、低温弯曲试验、浸水马歇尔试验和冻融劈裂试验。首先研究了蒙脱土掺量对复合改性沥青混合料高低温性能和水稳定性的影响,并结合灰关联分析推荐了蒙脱土最佳掺量。然后以SBS改性沥青混合料作为对照,通过测试不同老化条件下路用性能,分析了复合改性沥青混合料的抗老化性能。研究结果表明:适当掺加蒙脱土可以提高复合改性沥青混合料的高温性能和水稳定性,但是掺量过大时高温性能提升幅度不大,水稳定性反而有所下降。掺加蒙脱土会对复合改性沥青混合料的低温性能产生不利影响。灰关联分析表明蒙脱土掺量对各项路用性能指标的影响程度大小依次为低温性能水稳定性高温性能,因此不宜为了提升高温性能而片面增大蒙脱土掺量。结合蒙脱土掺量与各项路用性能指标的关系,推荐蒙脱土掺量范围为2%~4%,并选取3%作为最佳掺量。最佳蒙脱土掺量条件下,复合改性沥青混合料的抗老化性能较之SBS改性沥青混合料得到显著提高,尤其是低温抗老化性能,虽然老化前复合改性沥青混合料的低温性能要差于SBS改性沥青混合料,但是经老化后前者的衰减幅度较小,其低温性能反而优于后者。  相似文献   

3.
为提高应力吸收层材料的抗裂性和疲劳耐久性,阻止反射裂缝的发生和发展,将橡胶粉与低密度PE进行复配,基于室内加速加载、小梁弯曲和间接拉伸疲劳试验研究了LDPE和橡胶粉掺量对应力吸收层混合料高温稳定性、低温抗裂性和抗疲劳耐久性的影响并将其路用性能与STRATA应力吸收层混合料进行了对比。研究结果表明,相同LDPE掺量情况下,增大橡胶粉掺量复合改性沥青旋转黏度呈二次函数关系增大,橡胶粉和LDPE掺量对复合改性沥青软化点有显著的影响,橡胶粉对LDPE改性沥青的低温性能有明显的改善作用,而LDPE掺量越大复合改性沥青低温抗裂性越差;以软化点≥75℃,5℃延度≥20 cm,135℃黏度≤3.5 Pa·s,25℃弹性恢复率≥65%作为判别标准优选了五种不同复配方案,经室内试验和试验路验证推荐最佳复配方案为6%LDPE+18%橡胶粉。研究成果可对今后同类型工程设计提供技术参考与研究思路。  相似文献   

4.
为研究橡胶粉和低密度聚乙烯(LDPE)掺量对沥青混合料综合路用性能的影响,变化4种橡胶粉和LDPE掺量,采用弹性恢复率、针入度、软化点、177℃旋转黏度4种改性沥青的常规性能试验,利用车辙、低温弯曲和四分点加载控制应变疲劳试验,研究了橡胶粉和LDPE掺量对复合改性沥青及其混合料性能的影响规律。结果表明:以软化点≥60℃,25℃针入度25~60(0.1 mm),177℃旋转黏度1.5~4.5 Pa·s,25℃弹性恢复率≥65%作为判别标准优选了4种LDPE与橡胶粉复配方案,经室内试验和试验路验证推荐最佳复配方案为6%LDPE+18%橡胶粉。橡胶粉与LDPE复合改性沥青混合料具有优良的高温稳定性和抗疲劳耐久性,工程实践证明LDPE与橡胶粉复合改性沥青混凝土延长了道路的使用寿命,经济、社会效益显著。  相似文献   

5.
为改善沥青混合料的路用性能,采用胶粉、聚乙烯(PE)对沥青混合料进行改性,对比分析了胶粉改性沥青混合料与基质沥青混合料、SBS改性沥青混合料高、低温性能、水稳定性能,并研究了PE掺量对胶粉复合改性沥青混合料性能的影响,并将此技术应用到河南省机西高速公路二期路面工程中。研究表明:随着胶粉掺量的增加,改性沥青混合料动稳定度不断增大,胶粉掺量为20%时改性沥青混合料与SBS掺量为4.5%的改性沥青混合料高温性能相当,而低温性能、水稳定性能均优于SBS改性沥青混合料;随着PE掺量增加,复合改性沥青混合料的高温抗车辙性能及水稳定性能不断提高,低温性能有所降低,但仍高于基质沥青混合料。  相似文献   

6.
基于岩沥青+SBS复合改性沥青及混合料的路用性能,通过室内试验分别对复合改性工艺、岩沥青掺量、复合改性沥青性能指标,复合改性沥青混合料高温、低温和水稳定性能等进行研究.试验结果表明添加岩沥青后,沥青混合料的高温、水稳定性能均有改善,其中,5%的岩沥青掺量能使混合料的高温性能获得较大提高,水稳定能力得到改善,同时低温性能也得到保证.  相似文献   

7.
采用湿法工艺制备了不同目数、不同掺量的胶粉改性沥青,利用常规指标、SHRP流变指标分析了胶粉改性沥青的高温、低温及疲劳性能的变化规律;在最佳胶粉掺量下,探讨了活化剂掺量对胶粉改性沥青混合料性能的影响,并将胶粉改性沥青与其对应混合料的高温、低温、疲劳性能的相关性进行回归分析。结果表明:综合考虑胶粉改性沥青的性能及经济性,3种目数的胶粉最佳掺量为18%;在沥青中掺加胶粉可以改善沥青及其混合料的高温、低温及疲劳性能,掺加活化剂后改善效果更为明显,且在4%活化剂掺量下混合料各项性能最优;推荐AR型车辙因子、延度、疲劳因子分别作为胶粉改性沥青高温、低温、疲劳性能评价指标,推荐DS、破坏应变、K值分别作为胶粉改性沥青混合料高温、低温、疲劳性能评价指标。  相似文献   

8.
采用了APA汉堡车辙试验、低温弯曲试验、浸水马歇尔试验和冻融劈裂试验以及小梁疲劳试验,研究了硅藻土与橡胶粉复合改性沥青混合料的路用性能。试验结果表明,在18%橡胶粉掺量下,随着硅藻土掺量的增加,复合改性沥青混合料的高温稳定性增强,水稳定性、低温抗裂性以及疲劳性能提高,且18%橡胶粉+1l%硅藻土复合后其综合路用性能与4.5%SBS改性沥青混合料相差不大。结合路用性能试验结果,最终推荐了橡胶粉与硅藻土的最佳掺配比例。  相似文献   

9.
祁昊  郭莹莹  王岚 《公路》2023,(2):265-273
为研究钢渣胶粉改性沥青混合料的最佳钢渣掺量,对不同钢渣掺量下胶粉改性沥青混合料的路用性能进行研究。首先对钢渣进行微观特性分析,利用钢渣对AC-16玄武岩胶粉改性沥青混合料的10~20 mm、5~20 mm、3~20 mm等3档粗集料分别进行替换。以AC-16玄武岩胶粉改性沥青混合料集配曲线为基础,经过质量-体积换算,得到不同替换方式下各档钢渣所占比例。通过高温车辙试验、低温小梁弯曲试验、浸水马歇尔和冻融劈裂试验对钢渣-玄武岩胶粉改性沥青混合料高、低温及水稳定性进行研究。最后针对各项指标运用灰靶决策理论,计算选出钢渣替换玄武岩的最佳替换方案。结果表明:钢渣加入后混合料油石比降低,单位体积内实际沥青用量增大;钢渣替代玄武岩可改善混合料路用性能;钢渣替换5~20 mm玄武岩粗集料,混合料高温性能最优;随着钢渣掺量增大,低温性能、水稳定性越来越好;运用灰靶决策理论确定最佳方案为钢渣替换5~20 mm粗集料,此时掺量为58%。  相似文献   

10.
为分析硅藻土改性沥青混合料的路用性能,针对硅藻土混合料进行了配合比设计,并对混合料进行了车辙试验、低温弯曲试验和浸水马歇尔、冻融劈裂试验,分析了不同硅藻土掺量时改性沥青混合料的高温、低温和水稳定性能。结果表明,适量的硅藻土可以明显改善混合料的高温抗车辙性、低温抗裂性和抗水损害性能,掺量过大会产生负面的影响,推荐最佳掺量为12%。  相似文献   

11.
通过车辙、低温弯曲、浸水马歇尔和冻融劈裂等试验,研究不同Elvaloy RET掺量改性沥青混合料的高温、低温和水稳定性能,全面对比和评价了Elvaloy RET掺量对基质沥青性能改善效果的影响,提出了Elvaloy RET工程用最佳掺量。研究结果表明:Elvaloy RET改性沥青混合料具有良好的路用性能。  相似文献   

12.
将聚丙烯纤维掺入沥青混合料中配制聚酯纤维改性沥青混合料,通过室内试验分析该沥青混合料的路用性能。结果表明,聚酯纤维的掺入可显著提高沥青混合料的高温稳定性,其掺量由零增加到0.35%的过程中增强效果越来越明显;随着聚酯纤维掺量的增加,沥青混合料的低温抗裂性能增强,掺量为0.3%时低温抗裂性能最佳;纤维掺量大于0.3%时,沥青混合料的最大弯拉应变不升反降;考虑经济性与路用性能,聚酯纤维的最佳掺量为0.25%~0.3%。工程应用结果表明,采用聚酯纤维改性沥青混合料作为路面面层,路面强度、抗裂与抗变形能力优异。  相似文献   

13.
《公路》2015,(11)
通过软化点、延度等试验研究不同掺量CRP对两种不同沥青的性能影响,试验结果表明:随着CRP掺量的增加,改性沥青的软化点提高,常温黏度提高,延度降低;CRP掺量达到5.5%时,沥青具有较好的高温、低温性能。此改性剂对两种沥青性能的影响规律及效果基本相同,并通过车辙试验对沥青混合料的高温稳定性进行研究,证实了改性后沥青及混合料的各种性能均有不同程度的改善,从而为废旧塑料CRP改性沥青及混合料的可行性提供依据。  相似文献   

14.
肖常青 《中外公路》2013,33(1):245-248
主要研究了不同掺量温拌剂EC-120对SBS改性沥青混合料主要路用性能的影响.以机械搅拌的方式制备SBS温拌改性沥青,并测得不同温拌剂掺量下的改性沥青的3大指标.对不同温拌剂掺量下SBS温拌改性沥青混合料与SBS改性沥青混合料的高温稳定性、低温抗裂性能、水稳定性和抗疲劳性能进行对比试验.结果表明:SBS改性沥青混合料掺加温拌剂EC-120后,高温稳定性有很大提高,水稳定性、抗疲劳性能略有增加,低温抗裂性略有不足.  相似文献   

15.
采用湿法和干法2种工艺制备橡胶粉改性沥青混合料,对比分析基质沥青混合料、湿法工艺ARAC-13沥青混合料、干法工艺ARAC-13沥青混合料3种沥青混合料的高温稳定性、水稳定性及低温抗裂性能。研究结果表明:随着水泥替代矿粉比例增加,沥青混合料的路用性能先提高,后降低;橡胶粉改性沥青混合料水稳定性优于基质沥青混合料;ARAC-13W沥青混合料低温抗裂性能优于ARAC-13D沥青混合料性能;40目橡胶粉掺量为21%、水泥替代矿粉的比例为60%时,水泥橡胶粉复合改性沥青混合料路用性能最佳。  相似文献   

16.
《公路》2021,66(7):63-69
通过单轴拉伸试验、半圆弯拉试验和冻融劈裂试验等,考察了纤维类型和埋深与沥青的黏结作用,并分析了玻璃纤维掺量对基质沥青/改性沥青混合料高温稳定性、低温性能、中温抗裂性能和水稳定性的影响。结果表明,玻璃纤维与基质沥青/改性沥青的黏结强度高于玄武岩纤维和钢纤维,且改性沥青与纤维的黏结效果优于基质沥青。相同玻璃纤维掺量时,改性沥青混合料的稳定度、马歇尔模数、破坏拉伸应变、劈裂抗拉强度、断裂能、层底抗拉强度和层底抗拉应变都要高于基质沥青混合料,流值和破坏劲度模量都小于基质沥青混合料;改性沥青混合料有相较基质沥青混合料更好的高温稳定性、低温抵抗变形能力和中温抗裂性能。适量玻璃纤维的掺加有利于提高基质沥青/改性沥青混合料的劈裂强度,玻璃纤维-改性沥青混合料的水稳定性高于玻璃纤维-基质沥青混合料。玻璃纤维掺量为0.30%的改性沥青混合料具有最佳的路用性能。  相似文献   

17.
为了弥补BRA改性沥青低温抗裂性能方面的技术缺陷,提出采用SBR与BRA复配方案对其进行改善。通过对不同BRA掺量下的BRA与SBR复合改性沥青流变特性,以及复合改性沥青混合料路用性能研究,结果表明,BRA掺量在10%~15%时,复合改性沥青混合料综合路用性能最佳,BRA与SBR复合改性沥青混合料的各项路用性能可达到甚至超过了SBS改性沥青混合料。  相似文献   

18.
介绍了纳米改性沥青混合料的原材料及配合比设计,分析了纳米改性沥青的改性机理;以4%、5%、6%3种纳米SiO_2和CaCO_3复合材料掺量作对比,通过车辙试验、低温弯曲试验、浸水马歇尔和冻融劈裂试验综合评价了纳米改性沥青混合料的高、低温性能及水稳定性,结果表明,纳米沥青混合料的高温性能及水稳定性较好、低温性能一般,整体上纳米改性沥青混合料的路用性能较优,最佳纳米SiO_2和CaCO_3复合材料掺量为5%。  相似文献   

19.
为了改善特立尼达湖沥青(简称TLA)改性沥青低温抗裂性不足的缺点,该文提出用丁苯橡胶(SBR)对其改性,以期能综合两种改性剂(SBR与TLA)的优点。该文采用70~#基质沥青、20%TLA、2%SBR+10%TLA、2%SBR+20%TLA和3%SBR+20%TLA共5种胶结料制备AC-13沥青混合料,并进行了马歇尔试验、车辙试验、低温劈裂试验、浸水马歇尔试验,以分析SBR/TLA复合改性沥青混合料的高温、低温和水稳定性。试验结果表明:①掺加SBR和TLA均能提高TLA/SBR复合改性沥青混合料的高温性能,相比于TLA、SBR对高温性能的影响更显著;②掺加TLA减弱了TLA/SBR改性沥青混合料的低温抗裂性,掺加SBR能改善TLA/SBR复合改性沥青混合料的低温性能;③掺加TLA能改善沥青混合料的水稳定性,随SBR掺量的增大,SBR/TLA改性沥青混合料的残留稳定度先减小后增大。相比于TLA,SBR对SBR/TLA改性沥青混合料的水稳定性的影响更加显著;④3%SBR+20%TLA为最佳的改性剂掺配比例。  相似文献   

20.
采用车辙试验、低温弯曲试验、冻融劈裂试验、小梁疲劳试验分别研究了掺加木质素纤维前后橡胶粉改性沥青混合料的路用性能。试验结果表明,橡胶沥青混合料具有较好的高温稳定性,而水稳定性和低温抗裂性略有不足,通过木质素与橡胶粉复配可以提高橡胶沥青混合料的综合路用性能。最后结合工程的经济性和复合改性沥青混合料的综合路用性能,推荐了复合改性沥青混合料的最佳木质素掺量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号