共查询到18条相似文献,搜索用时 70 毫秒
1.
针对BFSN算法需要人工输入参数r和λ的缺陷,提出了一种自适应确定r和λ的SA-BFSN聚类方法。该方法通过Inverse Gaussian拟合判断r参数,通过分析噪声点数量的分布特征选择合适的λ值。算法测试表明,使用SA-BFSN无需人工输入参数,能够实现聚类过程的全自动化,能够有效处理任意形状、大小和密度的簇。 相似文献
2.
本文联系异常检测和数据挖掘,从理论上着重分析了在入侵检测系统中应用基于密度聚类算法的必要性和有效性,从TCPDump网络数据和系统日志中提取分析后生成特征数据,通过Clenmine中CEMI实现定制的基于密度的改进DBSCAN算法进行测试,结果表明利用该算法可以较好地识别分布式拒绝服务攻击等多种入侵行为。 相似文献
3.
经典的密度聚类算法是DBSCAN(Density—BasedSpatialClusteringofApplicationswithNoise).它在处理空间数据时具有快速、有效处理噪声点和发现任意形状的聚类等优点。但是DBSCAN存在一些缺点,因此许多密度聚类算法被提出来,包括:基于抽样的DBSCAN、基于数据分区的DBSCAN、基于密度梯度的聚类算法和基于相对密度的聚类算法等。 相似文献
4.
密度峰值聚类(density peak, DPeak)算法是一种简单有效的聚类算法,它可将任意维度数据映射成2维,在降维后的空间中建构出数据之间的层次关系,可以非常容易地从中挑选出密度高、且与其他密度更高区域相隔较远的数据点.这些点被称为密度峰值点,可以用来作为聚类中心.根据建构好的层次关系,该算法提供了2种不同的方式完成最后聚类:一种是与用户交互的决策图,另一种是自动化方式.跟踪了DPeak近年来的发展与应用动态,对该算法的各种改进或变种从以下3方面进行了总结和梳理:首先,介绍了DPeak算法原理,对其在聚类算法分类体系中的位置进行了讨论.将其与5个主要的聚类算法做了比较之后,发现DPeak与均值漂移聚类算法(mean shift)有诸多相似之处,因而认为其可能为mean shift的一个特殊变种.其次,讨论了DPeak的几个不足之处,如复杂度较高、自适应性不足、精度低和高维数据适用性差等,将针对这些缺点进行改进的相关算法做了分类讨论.此外,梳理了DPeak算法在不同领域中的应用,如自然语言处理、生物医学应用、光学应用等.最后,探讨了密度峰值聚类算法所存在的问题及挑战,同时对进一步的工作进行展望. 相似文献
5.
为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial datastream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033 ms. 相似文献
6.
目前犯罪组织的严密性和隐蔽性日益增强,电子邮件的广泛应用更为犯罪分子的分散隐匿提供了便利条件.为了解决重点监控对象选择问题,设计了电子邮件地址聚类系统.系统根据电子邮件地址之间的收发关系,构建出电子邮件地址的相似度测量属性,利用基于密度聚类方法中的DBSCAN算法,对电子邮件地址关系紧密程度进行划分,找出较为活跃的电子邮件地址,缩小了电子邮件地址查阅范围,提高了电子邮件信息分析处理的针对性和有效性. 相似文献
7.
IncSNN——一种基于密度的增量聚类算法 总被引:1,自引:0,他引:1
基于密度的聚类算法是一类重要的聚类算法,能发现任意形状的簇,但由于它的时间复杂度较高,因此设计有效的增量更新算法是一个重要研究方向.在SNN算法的基础上,提出一种基于密度的增量聚类算法-IncSNN.该算法将所更新对象的空间进行划分,定义了基于该划分的最近邻居的概念,进而确定了受影响对象的集合,当算法更新时,只需要对受影响的数据进行处理.由于受影响对象的集合远小于原数据集合,因此显著提高了算法的效率.实验结果验证了IncSNN的有效性. 相似文献
8.
9.
数据挖掘中的聚类方法在维修数据分析中的应用 总被引:2,自引:0,他引:2
聚类是统计学的一种方法,也作为数据挖掘的一个功能被广泛地应用。本文介绍了聚类的概念、应用、算法分类,以及一个维修数据库分析的具体应用实例。 相似文献
10.
11.
分析了密度聚类算法(DBSCAN)的局限性,在此基础上提出了一种基于密度的面向线段的聚类方法,将DBSCAN中聚类的对象由点转变为线段。在对点聚类的基础上,研究了线段聚类的特点。该算法可以有效处理分布不均匀的线段对象集,发现分布密度不同的各种簇。通过试验证明了该方法的可行性与有效性。 相似文献
12.
为有效地弥补全文搜索引擎的不足,提出了一种动态求解的最优密度聚类算法并加以实现.该算法构造了一颗簇关系树,将两种典型聚类算法:密度聚类算法DBSCAN和层次聚类算法BIRCH进行有效结合,对聚类参数ε进行动态求解,以达到参数ε的最优.与其它文本聚类算法相比,该算法的查询结果与用户感兴趣的主题相关度较大,对具有二义性的关键词有较高的查准率,能有效提升搜索引擎的查询效率,加快用户搜索信息的速度. 相似文献
13.
14.
以DBSCAN算法为基础,提出一种基于四叉树的快速聚类算法。新算法选择处于核心点的中空球形邻域中的点作为种子点来扩展类,大大减少区域查询的次数,降低I/O开销;使用快速生成的四叉树进行区域查询,在提高查询效率的同时,有效缩短构造空间索引的时间。文中对二维模拟数据和真实数据进行测试,结果表明新算法是有效的。 相似文献
15.
首先对DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法进行了深入研究,分析了它的特点、存在的问题及改进思想,提出了基于DBSCAN方法的交通事故多发点段的排查方法及其改进思路,并且给出了实例以说明处理过程及可行性。实验结果表明本文提出的方法可以大大提高交通事故黑点排查效率。 相似文献
16.
现有的大多数孤立点检测算法都需要预先设定孤立点个数,并且还缺乏对不均匀数据集的检测能力。针对以上问题,提出了基于聚类的两段式孤立点检测算法,该算法首先用DBSCAN聚类算法产生可疑孤立点集合,然后利用剪枝策略对数据集进行剪枝,并用基于改进距离的孤立点检测算法产生最可能孤立点排序集合,最终由两个集合的交集确定孤立点集合。该算法不必预先设定孤立点个数,具有较高的准确率与检测效率,并且对数据集的分布状况不敏感。数据集上的实验结果表明,该算法能够高效、准确地识别孤立点。 相似文献
17.
一种基于密度的高效聚类算法 总被引:8,自引:1,他引:8
在聚类算法DBSCAN(DensityBasedSpatialClusteringofApplicationswithNoise)的基础上,提出了一种基于密度的高效聚类算法。该算法首先对样本集按某一维排序,然后通过在核心点的邻域外按顺序选择一个未标记的样本点来扩展种子点,以便减少查询次数,降低聚类的时间花费。对样本进行非线性核变换后再进行聚类可以有效地改善聚类的质量。理论分析表明,该算法的时间复杂性接近于线性复杂度。同时测试结果也表明新算法的时间复杂度和聚类质量都显著优于DBSCAN算法。 相似文献
18.
APSCAN: A parameter free algorithm for clustering 总被引:1,自引:0,他引:1
DBSCAN is a density based clustering algorithm and its effectiveness for spatial datasets has been demonstrated in the existing literature. However, there are two distinct drawbacks for DBSCAN: (i) the performances of clustering depend on two specified parameters. One is the maximum radius of a neighborhood and the other is the minimum number of the data points contained in such neighborhood. In fact these two specified parameters define a single density. Nevertheless, without enough prior knowledge, these two parameters are difficult to be determined; (ii) with these two parameters for a single density, DBSCAN does not perform well to datasets with varying densities. The above two issues bring some difficulties in applications. To address these two problems in a systematic way, in this paper we propose a novel parameter free clustering algorithm named as APSCAN. Firstly, we utilize the Affinity Propagation (AP) algorithm to detect local densities for a dataset and generate a normalized density list. Secondly, we combine the first pair of density parameters with any other pair of density parameters in the normalized density list as input parameters for a proposed DDBSCAN (Double-Density-Based SCAN) to produce a set of clustering results. In this way, we can obtain different clustering results with varying density parameters derived from the normalized density list. Thirdly, we develop an updated rule for the results obtained by implementing the DDBSCAN with different input parameters and then synthesize these clustering results into a final result. The proposed APSCAN has two advantages: first it does not need to predefine the two parameters as required in DBSCAN and second, it not only can cluster datasets with varying densities but also preserve the nonlinear data structure for such datasets. 相似文献