首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 11 毫秒
1.
尤东江  魏建云  李雪菁  娄景媛 《化工学报》2019,70(11):4437-4448
液流电池通常采用对角平推流流场,会形成电解液滞留区,造成电池局部浓差极化大,影响综合性能。鉴于此,提出了一种基于框架设计的流场优化方法,通过设计电极框架,可以得到“蛇形流道”和“平行流道”两类流场。以全钒液流电池为例,通过数学建模,研究了不同流场结构和参数对于多孔电极内电解液流动特性、电化学反应和温度变化特性的影响规律。计算结果与实验结果一致性良好,结果表明:电解液在“平行流场”内的流动均匀性比在“蛇形流场”内好,且不存在滞留区,同时在“平行流场”内浓差极化也较“蛇形流场”低;此外,对于同样的电极面积,在电极内部的“平行流道”越多,电解液的流速分布越均匀,反应特性越好。  相似文献   

2.
液流电池通常采用对角平推流流场,会形成电解液滞留区,造成电池局部浓差极化大,影响综合性能。鉴于此,提出了一种基于框架设计的流场优化方法,通过设计电极框架,可以得到"蛇形流道"和"平行流道"两类流场。以全钒液流电池为例,通过数学建模,研究了不同流场结构和参数对于多孔电极内电解液流动特性、电化学反应和温度变化特性的影响规律。计算结果与实验结果一致性良好,结果表明:电解液在"平行流场"内的流动均匀性比在"蛇形流场"内好,且不存在滞留区,同时在"平行流场"内浓差极化也较"蛇形流场"低;此外,对于同样的电极面积,在电极内部的"平行流道"越多,电解液的流速分布越均匀,反应特性越好。  相似文献   

3.
质子交换膜燃料电池流场板研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
赵强  郭航  叶芳  马重芳 《化工学报》2020,71(5):1943-1963
流场板是质子交换膜燃料电池的核心部件之一,其结构直接影响着反应气体的利用效率以及燃料电池的排水及散热性能。综述了近十余年来质子交换膜燃料电池流场板的设计与研究进展。研究者们基于平行流场、蛇形流场、交指流场、点状流场,从流道尺寸、流道截面、进口分配段、流道布置等方面开展结构设计和优化,不同程度提高了燃料电池水热管理以及电性能。此外,各种形式的组合流场可综合不同流场优点,多级分形仿生流场优化了反应物、压力与电流密度分布,三维精细化流场通过改善供气方式降低了浓差极化。  相似文献   

4.
徐波  齐亮  姚克俭  谢晓峰 《化工进展》2013,32(2):313-319
为了提高全钒液流电池双极板流道电解液分布均匀性,考察流体流动行为,本文基于计算流体力学,在传统平直并联流道基础上通过增加倾斜挡板和入口流堰,改进流道结构;同时探究钒电池用电解液在分段式多通道蛇形流道内流体水力学特征。数值模拟结果表明:分段式多通道蛇形流道既可以保持传统蛇形流道流体均匀分配的性能,又能有效降低流阻,减少泵耗;合适的电解液流速及其均匀分布可以优化电解液活性物质浓度分布,提高电解液稳定性,增大钒电池能量效率。  相似文献   

5.
简单介绍了典型液流电池的工作原理及石墨毡本身的结构特征与物化性质,重点阐述了近年来纳米粒子修饰改性电极在液流电池中的应用,对比分析了不同修饰改性工艺及不同类型纳米粒子对电极材料性能的优化效果,并进一步总结了纳米粒子提高电极材料电化学活性机制机理。最后针对电极性能优化研究提出了未来有助于提高电池效率、降低电池成本的发展方向。  相似文献   

6.
全钒液流电池电堆的均一性直接影响到其寿命。本文从流道结构、运行参数等方面,系统探讨了影响全钒液流电池电堆均一性的各种因素。通过优化管路结构和液流框结构,提高了电堆的均一性,随支管管径不断减小,当主管与支管管径由4∶3减小到4∶1时,电堆进液流量标准偏差由0.039m/s降到0.001m/s,电堆进液流速均一性得到改善;通过优化液流框结构,使电堆单体电池电解液流量标准偏差由0.142m/s降到0.032m/s,改善了电堆单体电池均一性。电解液流量、充放电电流密度等运行参数影响全钒液流电池电堆均一性,对其进行了实验与分析,结果表明:电堆电压标准偏差随充放电电流增大而线性增大,其斜率与截距均与电解液性质、电极材料性质及表面结构等因素有关;电堆电压标准偏差随电解液流速的增大而减小,且在超过一定流量后不再变化,为全钒液流电池材料选型优化、结构优化及运行提供技术支撑。  相似文献   

7.
利用已建立的数学模型考察了阴极扩散特性参数、阴极流场几何参数、电极电阻、催化剂活性、流道上O2浓度变化对H2-Air PEMFCs性能的影响.计算表明,增大氧有效扩散系数、减小扩散层厚度可增大电池的工作电流密度;提高氧还原反应交换电流密度、减小电极电阻、优化流道尺寸可改善电池性能;沿反应气体流动方向逐渐增加MEA的催化剂负载量可提高电流密度分布的均匀性.  相似文献   

8.
全钒液流电池电解液流场结构合理可使电流密度、钒电解液分布均匀,降低极化,提高电池性能。设计3种不同的电解液流场,研究流场结构对电池极化、充放电电流电压、功率密度和能量效率的影响。结果表明蛇形流场结构简单且易于加工,可使钒电解液均匀分布,增强电解液对流传质能力,能较充分利用钒电解液储能容量,电池的输出功率密度最高可达31.6 mW/cm2,与传统平行流场相比,电池电流效率提高13.9%,电压效率提高6.3%,能量效率提高14.8%,放电容量提高了35.3%。  相似文献   

9.
采用蛇形、平行和交指流场分别作为阳极和阴极流场,考察了其对直接甲醇燃料电池(DMFC)性能的影响。结果表明,对于阳极流场,蛇形流场因其更易于排除CO2气泡而性能最好,而平行和交指流场中则出现了CO2气泡堵塞流道的现象,影响了甲醇的传输,性能较差。对于阴极流场,平行流场下半部分流道出现了"水淹"现象,影响了氧气的传输,性能较差。蛇形和交指流场均能顺利排除水滴,性能比平行流场的好;交指流场能保证氧气的充足供应,高电流密度时比蛇形流场的电池性能好。蛇形流场作为阳极流场以及交指流场作为阴极流场将是电池性能较好的流场组合形式之一。  相似文献   

10.
全钒液流电池是目前技术上最成熟,应用最广泛的电化学储能电池。为了加快其产业化进程,本文对电池的关键材料-电极作了简短的研究。简述了液流电池对电极材料的要求,介绍了电极材料的分类,并对各种电极材料的优缺点作出了比较,分析了各种电极材料的应用前景,重点介绍了石墨毡电极材料的改性方法,并对石墨毡电极材料的发展趋势进行了展望。  相似文献   

11.
Performance of the proton exchange membrane fuel cell(PEMFC) is appreciably affected by the channel geometry. The branching structure of a plant leaf and human lung is an efficient network to distribute the nutrients in the respective systems. The same nutrient transport system can be mimicked in the flow channel design of a PEMFC, to aid even reactant distribution and better water management. In this work, the effect of bio-inspired flow field designs such as lung and leaf channel design bipolar plates, on the performance of a PEMFC was examined experimentally at various operating conditions. A PEMFC of 49 cm~2 area, with a Nafion 212 membrane with a 40% catalyst loading of 0.4 mg·cm-2 on the anode side and also 0.6 mg·cm~(-2) on the cathode side is assembled by incorporating the bio-inspired channel bipolar plate, and was tested on a programmable fuel-cell test station.The impact of the working parameters like reactants' relative humidity(RH), back pressure and fuel cell temperature on the performance of the fuel cell was examined; the operating pressure remains constant at 0.1 MPa. It was observed that the best performance was attained at a back pressure of 0.3 MPa, 75 °C operating temperature and 100% RH. The three flow channels were also compared at different operating pressures ranging from 0.1 MPa to 0.3 MPa, and the other parameters such as operating temperature, RH and back pressure were set as 75 °C,100% and 0.3 MPa. The experimental outcomes of the PEMFC with bio-inspired channels were compared with the experimental results of a conventional triple serpentine flow field. It was observed that among the different flow channel designs considered, the leaf channel design gives the best output in terms of power density. Further,the experimental results of the leaf channel design were compared with those of the interdigitated leaf channel design. The PEMFC with the interdigitated leaf channel design was found to generate 6.72% more power density than the non-interdigitated leaf channel design. The fuel cell with interdigitated leaf channel design generated5.58% more net power density than the fuel cell with non-interdigitated leaf channel design after considering the parasitic losses.  相似文献   

12.
The porous electrode under the rib area suffers from lower local oxygen concentration and more severe water flooding than that under the channel, which significantly affect the performance of proton exchange membrane fuel cells. To improve the oxygen concentration and water drainage under the rib, a series of novel flow fields with auxiliary channels equipped with through-plane arrayed holes were manufactured by three-dimensional (3D) metal printing, and the cell performance, ohmic resistance and pressure drop were experimentally and numerically studied, respectively. The novel fields were based on the sophisticated modification of traditional serpentine and parallel flow fields, that significantly improved the cell performance at high current density with an optimal number or length of the auxiliary channels, owing to the trade-off between the electric resistance and mass transfer under the rib. This novel flow field design solved the trilemma of performance, pressure drop and manufacture feasibility through the implementation of 3D printing technology.  相似文献   

13.
The performance and operation stability of proton exchange membrane fuel cells (PEMFCs) are closely related to the transportation of reactants and water management in the membrane electrode assembly (MEA) and flow field. In this paper, a new three-dimensional wave parallel flow field (WPFF) in cathode was designed and analyzed throughout simulation studies and an experimental method. The experimental results show that the performance of PEMFC with WPFF outperforms that of PEMFC with straight parallel flow field (SPFF). Specifically, the peak power density increased by 13.45% for the PEMFC with WPFF as opposed to PEMFC with SPFF. In addition, the flow field with area of 11.56 cm2 was formed by the assembly of transparent end plate used for cathode and the traditional graphite plate used for anode. To understand the mechanism of the novel flow field improving the performance of PEMFC, a model of PEMFC was proposed based on the geometry, operating conditions and MEA parameters. The thickness of gas diffusion layers (GDL), catalytic layers (CL) and proton exchange membrane were measured by scanning electron microscope. The simulation result shows that compared with SPFF, the WPFF based PEMFC promote the oxygen transfer from flow channel to the surface of CL through GDL, and it was beneficial to remove the liquid water in the flow channel and the MEA.  相似文献   

14.
J. Wang  H. Wang 《Fuel Cells》2012,12(6):989-1003
A generalized model developed by Wang was modified for flow field designs of the most common layout configurations with U‐type arrangement, including single serpentine, multiple serpentine, straight parallel, and interdigitated configurations. A direct and quantitative relationship was established among flow distribution, pressure drop, configurations, structures, and flow conditions. The model was used for a direct, systematic, and quantitative comparison of flow distributions and pressure drops among the most common layout configurations of interest. The straight parallel configuration had the lowest pressure drops but suffered the most possibility of the uneven flow distribution across the channels. The single serpentine had the best flow distribution but had the highest pressure drops. The flow distribution and the pressure drop in the multiple serpentine was between the straight parallel and the single serpentine. Finally, we suggested basic criteria of the flow field designs of bipolar plates for the industrial applications. This provides a practical guideline to evaluate how far a fuel cell is from design operating conditions, and measures how to improve flow distribution and pressure drop.  相似文献   

15.
Novel bipolar electrodes for battery applications   总被引:4,自引:0,他引:4  
A novel bipolar graphite felt electrode for use in redox flow batteries and other electrochemical systems is described. The new electrode features a unique approach in the design of bipolar electrodes, employing carbon black free, nonconductive polymer materials as substrates. This innovation allows a dramatic reduction of processing time and cost compared to conventional carbon polymer composite electrodes used in bipolar battery systems. The conductivity of the new electrode assembly is similar to that of conventional bipolar electrodes, however, it shows significant improvements in mechanical properties. The functionality of these novel electrodes has been evaluated in the vanadium redox battery application and the results show comparable performance with conventional composite materials. An important operational advantage, however, is that side reactions leading to the deterioration of conductive filler in the electrode substrate material (i.e., electrode delamination due to CO2-evolution) during cell overcharging are eliminated, making these electrodes more durable than the conventional designs. To date, these bipolar electrodes have been applied in vanadium redox cells but their design and properties promise further applications in a range of other redox flow batteries and bipolar electrochemical cell systems.  相似文献   

16.
Serpentine channels adjacent to a thin, porous medium are a potentially attractive alternative to a conventional thick flow-through electrode for redox flow batteries. The hydrodynamics of serpentine flow fields were investigated with computational fluid dynamics, a two-dimensional model of the porous electrode based on Darcy's law, and a resistance network model at the scale of the active area. Predictions from the three models were used to map the available design space. The optimal electrode thickness, in terms of minimizing nonuniformity, was identified and compared to the result for an interdigitated flow field. Serpentine favors thicker electrodes and higher flows than interdigitated, in qualitative agreement with experimental findings. Furthermore, interdigitated designs deliver more uniform intraelectrode velocities and lower overall pressure drops than serpentine flow fields.  相似文献   

17.
Serpentine channels are often used in microchannel reactors and heat exchangers. These channels offer better mixing, higher heat and mass‐transfer coefficients than straight channels. In the present work, flow and heat transfer experiments were carried out with a serpentine channel plate comprising of 10 units (single unit dimensions: 1 × 1.5 mm2 in cross section, length 46.28 mm, Dh 1.2 mm) in series. Pressure drop and heat‐transfer coefficients were experimentally measured. Flow and heat transfer in the experimental set‐up were simulated using computational fluid dynamics (CFD) models to understand the mechanisms responsible for performance enhancement. The CFD methodology, thus, developed was applied to understand the effect of various geometrical parameters on heat transfer enhancement. A criterion was defined for evaluation of heat transfer performance (heat transfer per unit pumping power), thus, ensuring due considerations to required pumping power. The effect of geometrical parameters and the corresponding mechanisms contributing for enhancement are discussed briefly. Based on the results, a design map comprising different serpentine channels showing heat transfer enhancement with pumping power was developed for Reynolds number of 200 which will be useful for further work on flow and heat transfer in serpentine channels. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1814–1827, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号