首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
云计算是新的一种面向市场的商业计算模式,向用户按需提供服务,云计算的商业特性使其关注向用户提供服务的服务质量。任务调度和资源分配是云计算中两个关键的技术,所使用的虚拟化技术使得其资源分配和任务调度有别于以往的并行分布式计算。目前主要的调度算法是借鉴网格环境下的调度策略,研究基于QoS的调度算法,存在执行效率较低的问题。我们对云工作流任务层调度进行深入研究,分析由底层资源虚拟化形成的虚拟机的特性,结合工作流任务的各类QoS约束,提出了基于虚拟机分时特性的任务层ACS调度算法。经过试验,我们提出的算法相比于文献[1]中的算法在对于较多并行任务的执行上存在较大的优势,能够很好的利用虚拟的分时特性,优化任务到虚拟机的调度。  相似文献   

2.
Volunteer computing systems offer high computing power to the scientific communities to run large data intensive scientific workflows. However, these computing environments provide the best effort infrastructure to execute high performance jobs. This work aims to schedule scientific and data intensive workflows on hybrid of the volunteer computing system and Cloud resources to enhance the utilization of these environments and increase the percentage of workflow that meets the deadline. The proposed workflow scheduling system partitions a workflow into sub-workflows to minimize data dependencies among the sub-workflows. Then these sub-workflows are scheduled to distribute on volunteer resources according to the proximity of resources and the load balancing policy. The execution time of each sub-workflow on the selected volunteer resources is estimated in this phase. If any of the sub-workflows misses the sub-deadline due to the large waiting time, we consider re-scheduling of this sub-workflow into the public Cloud resources. This re-scheduling improves the system performance by increasing the percentage of workflows that meet the deadline. The proposed Cloud-aware data intensive scheduling algorithm increases the percentage of workflow that meet the deadline with a factor of 75% in average with respect to the execution of workflows on the volunteer resources.  相似文献   

3.
网格基础设施是目前科学工作流应用规划、部署和执行的主要支撑环境.然而由于网格资源的自治、动态及异构性,如何在保障用户QoS约束下有效调度科学工作流是一个研究热点.针对费用约束下的科学工作流调度问题,为了提高其执行的可靠性,本文使用随机服务模型描述资源节点的动态服务能力并考虑本地任务负载对资源执行性能的影响,给出一种资源可靠性的评估方法,在此基础上提出一种费用约束下的科学工作流可靠调度算法RSASW.仿真实验结果表明RSASW算法相对于GAIN3,GreedyTime-CD及PFAS算法,对工作流的执行具有很好的可靠性保障.  相似文献   

4.
Due to the highly dynamic feature, dependable workflow scheduling is critical in the Grid environment. Various scheduling algorithms have been proposed, but seldom consider the resource reliability. Current Grid systems mainly exploit fault tolerance mechanism to guarantee the dependable workflow execution, which, however, wastes system resources. The paper proposes a dependable Grid workflow scheduling system (called DGWS). It introduces a Markov Chain-based resource availability prediction model. Based on the model, a reliability cost driven workflow scheduling algorithm is presented. The performance evaluation results, including the simulation on both parametric randomly generated DAGs and two real scientific workflow applications, demonstrate that compared to present workflow scheduling algorithms, DGWS improves the success ratio of tasks and diminishes the makespan of workflow, so improves the dependability of workflow execution in the dynamic Grid environments.  相似文献   

5.
QoS guided Min-Min heuristic for grid task scheduling   总被引:75,自引:1,他引:74       下载免费PDF全文
Task scheduling is an integrated component of computing.With the emergence of Grid and ubiquitous computing,new challenges appear in task scheduling based on properties such as security,quality of service,and lack of central control within distributed administrative domains.A Grid task scheduling framework must be able to deal with these issues.One of the goals of Grid task scheduling is to achivev high system throughput while matching applications with the available computing resources.This matching of resources in a non-deterministically shared heterogeneous environment leads to concerns over Quality of Service (QoS).In this paper a novel QoS guided task scheduling algorithm for Grid computing is introduced.The proposed novel algorithm is based on a general adaptive scheduling heuristics that includes QoS guidance.The algorithm is evaluated within a simulated Grid environment.The experimental results show that the nwe QoS guided Min-Min heuristic can lead to significant performance gain for a variety of applications.The approach is compared with others based on the quality of the prediction formulated by inaccurate information.  相似文献   

6.
为了优化云工作流调度的经济代价和执行效率,提出一种基于有向无循环图(DAG)分割的工作流调度算法PBWS。以工作流调度效率与代价同步优化为目标,算法将调度求解过程划分为三个阶段进行:工作流DAG结构分割、分割结构调整及资源分配。工作流DAG结构分割阶段在确保任务间执行顺序依赖的同时求解初始的任务分割图;分割结构调整阶段以降低执行跨度为目标,在不同分割间对任务进行重分配;资源分配阶段旨在选择代价最高效的任务与资源映射关系,确保资源的总空闲时间最小。利用五种科学工作流DAG模型对算法进行了仿真实验。结果表明。PBWS算法仅以较小的执行跨度为开销,极大降低了工作流执行代价,实现了调度效率与调度代价的同步优化,其综合性能是优于同类型算法的。  相似文献   

7.
网格优化有向超图任务调度算法   总被引:1,自引:0,他引:1  
任务调度是网格计算的一个重要部分.分析网格环境下任务调度的特点以及传统DAG图的优缺点,吸取有向超图的优点,将有向超图理论融合网格环境特征,建立了网格环境下的优化有向超图模型,并在此基础上通过网格优化有向超图的水平构形、标号及带宽计算实现任务对网格资源的映射与调度,提出网格优化有向超图任务调度算法GODHTS.模拟实验结果证明了该模型及其算法的有效性和优越性.  相似文献   

8.
Security is increasingly critical for various scientific workflows that are big data applications and typically take quite amount of time being executed on large-scale distributed infrastructures. Cloud computing platform is such an infrastructure that can enable dynamic resource scaling on demand. Nevertheless, based on pay-per-use and hourly-based pricing model, users should pay attention to the cost incurred by renting virtual machines (VMs) from cloud data centers. Meanwhile, workflow tasks are generally heterogeneous and require different instance series (i.e., computing optimized, memory optimized, storage optimized, etc.). In this paper, we propose a security and cost aware scheduling (SCAS) algorithm for heterogeneous tasks of scientific workflow in clouds. Our proposed algorithm is based on the meta-heuristic optimization technique, particle swarm optimization (PSO), the coding strategy of which is devised to minimize the total workflow execution cost while meeting the deadline and risk rate constraints. Extensive experiments using three real-world scientific workflow applications, as well as CloudSim simulation framework, demonstrate the effectiveness and practicality of our algorithm.  相似文献   

9.
Grids facilitate creation of wide-area collaborative environment for sharing computing or storage resources and various applications. Inter-connecting distributed Grid sites through peer-to-peer routing and information dissemination structure (also known as Peer-to-Peer Grids) is essential to avoid the problems of scheduling efficiency bottleneck and single point of failure in the centralized or hierarchical scheduling approaches. On the other hand, uncertainty and unreliability are facts in distributed infrastructures such as Peer-to-Peer Grids, which are triggered by multiple factors including scale, dynamism, failures, and incomplete global knowledge.In this paper, a reputation-based Grid workflow scheduling technique is proposed to counter the effect of inherent unreliability and temporal characteristics of computing resources in large scale, decentralized Peer-to-Peer Grid environments. The proposed approach builds upon structured peer-to-peer indexing and networking techniques to create a scalable wide-area overlay of Grid sites for supporting dependable scheduling of applications. The scheduling algorithm considers reliability of a Grid resource as a statistical property, which is globally computed in the decentralized Grid overlay based on dynamic feedbacks or reputation scores assigned by individual service consumers mediated via Grid resource brokers. The proposed algorithm dynamically adapts to changing resource conditions and offers significant performance gains as compared to traditional approaches in the event of unsuccessful job execution or resource failure. The results evaluated through an extensive trace driven simulation show that our scheduling technique can reduce the makespan up to 50% and successfully isolate the failure-prone resources from the system.  相似文献   

10.
Many Directed Acyclic Graph (DAG)-based workflow applications often have timing constraints such that each processing of a workflow needs to be finished within its deadline. There have been some studies to improve the performance of time-constrained workflow processing. Few of them, however, have taken into account the fact that successful execution of a workflow within its deadline is also affected by the ‘normal state’ and ‘abnormal state’ of Grid resources occurring in successive turns and by the relative difference in execution time between tasks on the critical path and tasks on the non-critical path. To solve the problem, we first put forward new some conceptions, such as the critical region and the reliability of the critical region, and then present a scheduling algorithm. In terms of the finite-state continuous-time Markov process, the algorithm selects a resource combination scheme which has the lowest expenditure under a certain credit level of the resource reliability on the critical path in the DAG-based workflow. The simulation shows the validity of theory analysis.  相似文献   

11.
Accurate estimation of workflow Quality of Service (QoS) enhances the efficiency of scheduling algorithms. The availability and performance variations of Grid computing resources have made this estimation a great challenge. Most workflow QoS estimation algorithms are based on static performance of resources. In this paper, based on resources availability prediction, we propose an algorithm called WQE for estimating the QoS of a Grid workflow. WQE consists of two phases: resource monitoring and analysis and workflow QoS computation. In the first phase, two prediction algorithms are proposed to stochastically predict the availability state of resources. In the second phase, the QoS of each activity is estimated based on the host availability prediction result. The QoS of basic structures is computed by aggregating the QoS of their operands. Using a tree structure corresponding to the workflow, the QoS of basic structures is used to compute the total QoS of the workflow. The simulation results on Notre Dame University trace showed that the proposed method has higher estimation accuracy in comparison with HEFT.  相似文献   

12.
MapReduce编程模型被广泛应用于大数据处理平台,而一个有效的任务调度算法对模型的运行效率至关重要。将MapReduce工作流的Map和Reduce阶段分别拆解为若干个有先后序限定关系的作业,每个作业再拆解为多个任务。之后基于计算集群的可用资源和任务异构性,构建面向作业和任务的2级有向无环图(DAG)模型,同时提出基于2级优先级排序的异构调度算法2-MRHS。算法的第1阶段进行优先级排序,即对作业和任务分别进行优先权值计算,再汇总得到任务的调度队列;第2阶段进行任务分配,即基于最快完成时间将每个任务所包含的数据块子任务分配给最适合的计算结点。采用大批量随机生成的DAG模型进行实验,结果表明与其他相关算法相比,本文算法有更短的调度长度(makespan)且更加稳定。  相似文献   

13.
Cloud computing allows execution and deployment of different types of applications such as interactive databases or web-based services which require distinctive types of resources. These applications lease cloud resources for a considerably long period and usually occupy various resources to maintain a high quality of service (QoS) factor. On the other hand, general big data batch processing workloads are less QoS-sensitive and require massively parallel cloud resources for short period. Despite the elasticity feature of cloud computing, fine-scale characteristics of cloud-based applications may cause temporal low resource utilization in the cloud computing systems, while process-intensive highly utilized workload suffers from performance issues. Therefore, ability of utilization efficient scheduling of heterogeneous workload is one challenging issue for cloud owners. In this paper, addressing the heterogeneity issue impact on low utilization of cloud computing system, conjunct resource allocation scheme of cloud applications and processing jobs is presented to enhance the cloud utilization. The main idea behind this paper is to apply processing jobs and cloud applications jointly in a preemptive way. However, utilization efficient resource allocation requires exact modeling of workloads. So, first, a novel methodology to model the processing jobs and other cloud applications is proposed. Such jobs are modeled as a collection of parallel and sequential tasks in a Markovian process. This enables us to analyze and calculate the efficient resources required to serve the tasks. The next step makes use of the proposed model to develop a preemptive scheduling algorithm for the processing jobs in order to improve resource utilization and its associated costs in the cloud computing system. Accordingly, a preemption-based resource allocation architecture is proposed to effectively and efficiently utilize the idle reserved resources for the processing jobs in the cloud paradigms. Then, performance metrics such as service time for the processing jobs are investigated. The accuracy of the proposed analytical model and scheduling analysis is verified through simulations and experimental results. The simulation and experimental results also shed light on the achievable QoS level for the preemptively allocated processing jobs.  相似文献   

14.
网格中资源之间存在着通信延迟,通过任务复制的冗余,可以减少任务之间的通信开销,缩短整个计算程序的计算时间。目前网格中的任务调度算法基本上是没有考虑任务复制的;而基于任务复制调度算法往往会产生过多的复制任务,增大系统开销,甚至有可能延迟计算时间。由于基于任务复制的任务调度是一个NP问题,因此本文提出了一种基于任务复制的网格资源调度算法,以减少调度长度为主要目标、减少任务复制量和资源占用量为次要目标。该算法在调度长度和任务复制数量以及占用资源数量方面都等于或优于其它算法。  相似文献   

15.
This paper presents an optimization approach for decentralized Quality of Service (QoS)‐based scheduling based on utility and pricing in Grid computing. The paper assumes that the quality dimensions can be easily formulated as utility functions to express quality preferences for each task agent. The utility values are calculated by the user‐supplied utility function that can be formulated with the task parameters. The QoS constraint Grid resource scheduling problem is formulated into a utility optimization problem. The QoS‐based Grid resource scheduling optimization is decomposed into two subproblems by applying the Lagrangian method. In the Grid, a Grid task agent acts as a consumer paying for the Grid resource and the resource providers receive profits from task agents. A pricing‐based QoS scheduling algorithm is used to perform optimally decentralized QoS‐based resource scheduling. The experiments investigate the effect of the QoS metrics on the global utility and compare the performance of the proposed algorithm with other economical Grid resource scheduling algorithms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
近年来随着网格、云计算工作流等分布式计算技术的发展,关于DAG(有向无环图)模型任务在分布式系统环境下的调度问题逐渐成为备受关注的研究热点。根据最新研究进展,对分布式系统下的DAG任务调度问题和有关技术进行了研究与讨论,主要包括四个方面:系统地描述了分布式系统和异构分布式系统的有关概念,异构分布式系统下的DAG任务调度问题、调度模型及其典型应用;对现有分布式系统下DAG任务调度的研究按照不同的方式进行了分类;探讨了多DAG共享异构分布式资源调度的研究现状;讨论了目前多DAG共享异构分布式资源调度研究存在的问题和未来可能的研究方向。  相似文献   

17.
Clouds are rapidly becoming an important platform for scientific applications. In the Cloud environment with uncountable numeric nodes, resource is inevitably unreliable, which has a great effect on task execution and scheduling. In this paper, inspired by Bayesian cognitive model and referring to the trust relationship models of sociology, we first propose a novel Bayesian method based cognitive trust model, and then we proposed a trust dynamic level scheduling algorithm named Cloud-DLS by integrating the existing DLS algorithm. Moreover, a benchmark is structured to span a range of Cloud computing characteristics for evaluation of the proposed method. Theoretical analysis and simulations prove that the Cloud-DLS algorithm can efficiently meet the requirement of Cloud computing workloads in trust, sacrificing fewer time costs, and assuring the execution of tasks in a security way.  相似文献   

18.
面向云计算的工作流技术   总被引:3,自引:0,他引:3  
云计算的发展,对提高服务质量与压缩运行成本提出了新的要求.在此背景下,工作流技术被认为是一种较为优越的解决方案:从云计算用户的角度看,工作流提供了对复杂应用的抽象定义、灵活配置和自动化运行;从云计算服务提供者的角度看,工作流实现了任务的自动调度、资源的优化和管理.文章介绍工作流技术与云计算;阐述了云工作流产生的背景;深入剖析了云工作流的技术特征以及与其他工作流(业务工作流、网格工作流)的异同;列举了云工作流的4个实现案例,并对其进行比较.最后,在总结全文的同时,展望了云工作流技术的发展前景.  相似文献   

19.
云计算和移动互联网的不断融合,促进了移动云计算的产生与发展.在移动云计算环境下,用户可将工作流的任务迁移到云端执行,这样不但能够提升移动设备的计算能力,而且可以减少电池能源消耗.但是不合理的任务迁移会引起大量的数据传输,这不仅损害工作流的服务质量,而且会增加移动设备的能耗.基于此,本文提出了基于延时传输机制的多目标工作流调度算法MOWS-DTM.该算法基于遗传算法,结合工作流的调度过程,在编码策略中考虑了工作流任务的调度位置和执行排序.由于用户在不断移动的过程中,移动设备的无线网络信号也在不断变化.当传输一定大小的数据时,网络信号越强则需要的时间越少,从而移动设备的能耗也越少.而且工作流结构中存在许多非关键任务,延长非关键任务的执行时间并不会对工作流的完工时间造成影响.因此,本文在工作流调度过程中融入了延时传输机制DTM,该机制能够同时有效地优化移动设备的能耗和工作流的完工时间.仿真结果表明,相比MOHEFT算法和RANDOM算法,MOWS-DTM算法在多目标性能上更优.  相似文献   

20.
胡志刚  胡周君 《计算机应用》2007,27(10):2391-2394
网格任务调度过程中的资源匹配是根据任务要求从网格资源信息服务(GRIS)中查找出合适资源的过程。GRIS中记录的往往是资源的静态信息,由于本地负载的动态变化使得基于资源静态信息来确定的候选资源集中一些资源并不能满足任务的QoS需求。基于相关资源动态信息预测资源未来状态,给出了网格任务平均完成时间及完成时间的分布函数,并根据任务QoS需求,兼顾考虑资源当前及未来状态,提出了一种资源匹配模型与匹配算法。通过实验表明,该算法能有效减少候选资源数目,从而降低调度时间复杂度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号