首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Bronopol (2‐bromo‐2‐nitropropane‐1,3‐diol) is used as preservative in cosmetic industry. Its main role in commercial products consists in protection of the cosmetic composition stability by inhibiting the development of micro‐organisms. Unfortunately, preservatives can also undergo the degradation processes. The aim of examinations was to prove that bronopol decomposes in aqueous solutions and storage conditions have a significance influence on its degradation rate. High‐performance liquid chromatography method (methanol/water with hydrochloric acid 5:95 v/v) with spectrophotometric detection (210 nm) was used for examining the decomposition rate of bronopol. The impact of chemical (addition of cosmetics components: citric acid and/or sodium dodecylsulfate) and physical (elevated and ambient temperature, sunlight or ultraviolet radiation and air access) factors has been elaborated. Bronopol decomposes most rapidly (independently on the sample surrounding conditions) when it is in solution with sodium dodecylsulfate, the inverse dependence is observed in the presence of two compounds – citric acid and sodium dodecylsulfate. Additionally, the elevated temperature causes the acceleration of decomposition. Bronopol degradation by‐products were also identified as methanol, formic acid, tris(hydroxymethyl)methane and 2‐bromo‐2‐nitroethanol.  相似文献   

2.
Human metabolism of 2-ethylhexanoic acid (2-EHA), which is a known metabolite of important phthalates, was investigated using 2-EHA-contaminated food. The results of our studies reveal that the major catabolic pathway of 2-EHA in human is beta-oxidation. The dominant final urinary metabolite was identified and quantified as 3-oxo-2-ethylhexanoic acid (3-oxo-2-EHA), but only after immediate methylation of the extract from urine and prior to GC-MS analysis. Former studies without the precaution of immediate methylation had found 4-heptanone as the major metabolite, which is obviously an artifact arising from the decarboxylation of 3-oxo-2-EHA.  相似文献   

3.
4.
5.
We recently discovered, on the chromosome of Saccharomyces cerevisiae sigma 1278b, novel MPR1 and MPR2 genes required for resistance to a toxic analogue of L-proline, L-azetidine-2-carboxylic acid. The MPR genes, which were absent in the S. cerevisiae genome project strain S288C, encoded a novel acetyltransferase of 229 amino acids that detoxifies the analogue by acetylating it. The MPR1 gene homologue found in Schizosaccharomyces pombe was also shown to encode a similar acetyltransferase. To further analyse the origin and the physiological role of the yeast novel gene, we report here the comparative analysis of the MPR1 gene in the S. cerevisiae complex spp. which belong to the Saccharomyces sensu stricto group. Only the type strain of S. paradoxus exhibited resistance and acetyltransferase activity to L-azetidine-2-carboxylic acid. PCR was then used to isolate the new MPR1 homologue (Spa MPR1) from S. paradoxus with the primers based on the sequence of the MPR1 gene. Gene expression and enzymatic analysis showed that the cloned Spa MPR1 gene encodes an L-azetidine-2-carboxylic acid acetyltransferase of 231 amino acids, which has 87% identity to the MPR1 protein. We also found in the protein databases that S. bayanus contains a DNA fragment that is partly homologous to the MPR1 gene. However, the gene product was considered to lose the enzymatic activity, possibly due to the gene truncation or the base substitution(s) at the important region for catalysis. Further, genomic PCR analysis showed that most of the S. cerevisiae complex spp. have the sequence highly homologous to the MPR1 gene.  相似文献   

6.
BACKGROUND: A comparative analysis of seed allergens from various soybean genotypes is crucial for identifying and eliminating potential allergens. We have investigated the distribution of three major allergens (Gly m Bd 60K, Gly m Bd 30K and Gly m Bd 28K) in wild, landrace, ancestral and modern soybean genotypes. RESULTS: Gly m Bd 60K allergens consist of α subunits of β‐conglycinin and G2 subunits of glycinin. In wild genotypes, α subunits of β‐conglycinin separated into six to seven protein spots whereas five to seven spots were observed in the landraces. All genotypes of modern and ancestral groups showed 3–5 protein spots of α subunits of β‐conglycinin. All genotypes showed eight spots of glycinin G2 subunits except one ancestral genotype which had seven spots. Two protein spots were detected for Gly m Bd 30K in 14 genotypes but one spot was detected in two wild genotypes. Two protein spots were detected for Gly m Bd 28K in all genotypes. CONCLUSION: Considerable heterogeneity of the α subunit of β‐conglycinin distribution exists among these 16 soybean genotypes. Significant proteomic variation was observed between different soybean groups rather than among genotypes in the same group. This investigation would be valuable to researchers working with soybean and nutrition. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
The average β‐glucuronidase activity for children was 0.48 ± 0.04 U/mg, for adults 0.75 ± 0.27 U/mg and for elderly 1.55 ± 0.06 U/mg. For β‐glucosidase, it was 0.19 ± 0.02 U/mg for children, 0.77 ± 0.26 U/mg for adults and 1.18 ± 0.27 U/mg for elderly. In the presence of probiotics, the highest decrease in genotoxicity was observed for Lactobacillus casei 0908 (to 7.99 ± 1.32) and Lactobacillus paracasei 0919 (to 6.19 ± 1.44) for all children. In adults, lower mean genotoxicity was regarded after incubation of PhIP with L. casei 0908 (it was 5.27 ± 1.13) and L. paracasei 0919 (it was o 6.01 ± 1.00). For elderly, statistically significant decrease was maintained after incubation of PhIP with L. casei 0900 (to 6.72 ± 2.67).  相似文献   

8.
Abstract: Six different cultivars of banana flowers (Musa paradicicus) (Kathali, Bichi, Shingapuri, Kacha, Champa, and Kalabou) were analyzed for the content of polyphenol expressed as gallic acid equivalent and flavonoid expressed as quercetein equivalent, and the in vitro total antioxidative activities of the flower extracts were compared with standard and expressed as trolox equivalent. The reducing power, 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) and 2,2‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS?+) scavenging activities, inhibition of lipid peroxidation in a linoleic acid emulsion system, and liposome peroxidation system were measured and compared with respective standard antioxidants. Iron‐mediated Fenton reaction was carried out to evaluate the protective effect of the extract of banana flower (Kacha cultivar) against H2O2‐induced DNA damage. The Kacha variety contains the maximum amount of polyphenol (11.94 ± 0.03 mg of gallic acid equivalent/g of dry weight) and flavonoid (0.174 ± 0.001 g of quercetin equivalent/g of polyphenol). It also has the highest total antioxidant capacity, DPPH radical scavenging activity, and ABTS?+ radical scavenging activity with a least EC50 value of 0.051 mg/mL. Hepatic cell damage in iron‐mediated Fenton reaction caused by free radicals is reduced by the banana flower extract. On the basis of the results obtained, the banana flowers are found to be a potential source of natural antioxidants. This is the first report on the antioxidant properties of the extracts from banana flowers. The study suggests that the flowers of M. paradicicus that are found in India and consumed as vegetable can provide valuable functional ingredients that help in the prevention of oxidative stress.  相似文献   

9.
Fks1p and Fks2p are related proteins thought to be catalytic subunits of the beta-1,3-glucan synthase. Analysis of fks1 delta mutants showed a partial K1 killer toxin-resistant phenotype and a 30% reduction in alkali-soluble beta-1,3-glucan that was accompanied by a modest reduction in beta-1,6-glucan. The gas1 delta mutant lacking a 1,3-beta-glucanosyltransferase displayed a similar reduction in alkali-soluble beta-1,3-glucan but did not share the beta-1,6-glucan defect, indicating that beta-1,6-glucan reduction is not a general phenotype among beta-1,3-glucan biosynthetic mutants. Overexpression of FKS2 suppressed the killer toxin phenotype of fks1 delta mutants, implicating Fks2p in the biosynthesis of the residual beta-1,6-glucan present in fks1 delta cells. In addition, eight out of 12 fks1ts fks2 delta mutants had altered beta-glucan levels at the permissive temperature: the partial killer resistant FKS1F1258Y N1520D allele was severely affected in both polymers and displayed a 55% reduction in beta-1,6-glucan, while the in vitro hyperactive allele FKS1T605I M761T increased both beta-glucan levels. These beta-1,6-glucan phenotypes may be due to altered availability of, and structural changes in, the beta-1,3-glucan polymer, which might serve as a beta-1,6-glucan acceptor at the cell surface. Alternatively, Fks1p and Fks2p could actively participate in the biosynthesis of both polymers as beta-glucan transporters. We analysed Fks1p and Fks2p in beta-1,6-glucan deficient mutants and found that they were mislocalized and that the mutants had reduced in vitro glucan synthase activity, possibly contributing to the observed beta-1,6-glucan defects.  相似文献   

10.
11.
Rice is the staple food of around 3 billion people, most of them in Asia which accounts for 90% of global rice consumption. Aromatic rices have been preferred over non‐aromatic rice for hundreds of years. They have a premium value in national as well as international market owing to their unique aroma and quality. Many researchers were involved in identifying the compound responsible for the pleasant aroma in aromatic rice in the 20th century. However, due to its unstable nature, 2‐acetyl‐1‐pyrroline (2AP) was discovered very late, in 1982. Buttery and co‐workers found 2AP to be the principal compound imparting the pleasant aroma to basmati and other scented rice varieties. Since then, 2AP has been identified in all fragrant rice (Oryza sativa L.) varieties and a wide range of plants, animals, fungi, bacteria and various food products. The present article reviews in detail biochemical and genetic aspects of 2AP in living systems. The site of synthesis, site of storage and stability in plant systems in vivo is of interest. This compound requires more research on stability to facilitate use as a food additive. © 2016 Society of Chemical Industry  相似文献   

12.
13.
14.
15.
Response surface methodology was used to find the optimum ethanol concentration and temperature which maximises the antioxidant activity (AA) of hydroalcoholic extracts from aerial parts of Bidens pilosa L. A rotatable central composite design was used, and the extracts were characterised by the determination of solid concentration (SC), total flavonoid (TFC) and total polyphenol content (TPC). AA was determined through 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐sulphonic acid) diammonium salt (ABTS) and 2,2‐diphenyl‐1‐pycrylhydrazyl (DPPH) radical scavenging activity. Mathematical models showed the significant effects of each variable and allowed to select the optimum conditions of ethanol concentration (62.7%) and extraction temperature (66.2 °C). The optimised extract presented an AA of 804.9 ± 12.2 Trolox equivalent antioxidant capacity (TEAC) dry base (d.b.) for DPPH and 515.8 ± 31.8 TEAC d.b. for ABTS. It was observed that both TFC and TPC showed a good correlation with AA of the extracts.  相似文献   

16.
Experimental work was carried out in order to determine the usefulness of the 2‐alkylcyclobutanones as markers for irradiated Camembert cheese, salmon meat, mango and papaya. Both 2‐dodecylcyclobutanone (2‐DCB) and 2‐tetradecylcyclobutanone (2‐TCB) were readily detected in Camembert cheese even after storage for 26 days at 10 °C. A linear relationship was observed between irradiation dose (0.5–5 kGy) and the amount of cyclobutanone produced in the cheese. 2‐DCB and 2‐TCB were both identified in salmon meat irradiated in either the chilled (4 °C) or frozen state (−40 °C), although it was noted that less 2‐DCB was measured in the frozen samples. A linear response to increasing irradiation dose was demonstrated for salmon over the experimental range of 1–10 kGy. 2‐TCB was identified as the main marker for irradiated mango and could be detected in samples following storage for 14 days at 10 °C at doses as low as 0.1 kGy. As for the other products investigated, the concentration of this cyclobutanone increased linearly with increasing dose (0.1–2 kGy). With regard to papaya, 2‐DCB was identified as the principal irradiation marker. However, the concentration of this cyclobutanone decreased significantly with time, so that by day 21 of storage at 10 °C it could only be detected at the 2 kGy dose level. 2‐Tetradecenylcyclobutanone (2‐TDCB) was also detected in irradiated mango and papaya. © 2000 Society of Chemical Industry  相似文献   

17.
Besides flavan-3-ols, a family of N-phenylpropenoyl-L-amino acids (NPAs) has been recently identified as polyphenol/amino acid conjugates in the seeds of Theobroma cacao as well as in a variety of herbal drugs. Stimulated by reports on their biological activity, the purpose of this study was to investigate if these amides are absorbed by healthy volunteers after administration of a cocoa drink. For the first time, 12 NPAs were quantified in human urine by means of a stable isotope dilution analysis with LC-MS/MS (MRM) detection. A maximum amount was found in the urine taken 2 h after the cocoa consumption. The highest absolute amount of NPAs excreted with the urine was found for N-[4'-hydroxy-(E)-cinnamoyl]-L-aspartic acid (5), but the highest recovery rate (57.3 and 22.8%), that means the percentage amount of ingested amides excreted with the urine, were determined for N-[4'-hydroxy-(E)-cinnamoyl]-L-glutamic acid (6) and N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]-L-tyrosine (13). In order to gain first insights into the NPA metabolism in vivo, urine samples were analyzed by LC-MS/MS before and after beta-glucuronidase/sulfatase treatment. As independent of the enzyme treatment the same NPA amounts were found in urine, there is strong evidence that these amides are metabolized neither via their O-glucuronides nor their O-sulfates. In order to screen for caffeic acid O-glucuronides as potential NPA metabolites, urine samples were screened by means of LC-MS/MS for caffeic acid 3-O-beta-D-glucuronide and 4-O-beta-D-glucuronide. But not even trace amounts of one of these glucuronides were detectable, thus excluding them as major NPA metabolites and underlining the importance of future investigations on a potential O-methylation or reduction of the N-phenylpropenoyl moiety in NPAs.  相似文献   

18.
Among cereals, oats are known to be very frequently contaminated with type A trichothecenes and so they can play a major role in the exposition of the consumer to these mycotoxins. Seventy representative oat samples of both conventional and organic production were drawn at mills and at wholesale stage according to Commissions Regulation (EC) No 401/2006 and analyzed for nine type A trichothecenes by LC-MS/MS. High contamination rates were found for most of the toxins in conventional as well as in organic products (e. g. 100% for T-2 toxin or 99% for HT-2 toxin). The mean concentration of T-2/HT-2 (sum of the toxins) was 17 +/- 18 microg/kg (mean +/- SD) in all samples, 27 +/- 21 microg/kg in conventional, and 7.6 +/- 4.6 microg/kg in organic products, respectively. The highest T-2/HT-2 level has been determined in conventionally produced oat flakes (85 microg/kg). The mean level of T-2 tetraol (9.5 +/- 7.7 microg/kg) in all samples was found to be even higher than that of T-2 (5.1 +/- 6.0 microg/kg), whereas levels of T-2 triol, 4,15-diacetoxyscirpenol, 15-monoacetoxyscirpenol, and neosolaniol were considerably lower. For oats and oat products from organic farming contamination levels of T-2, HT-2, T-2 triol, T-2 tetraol, and neosolaniol were significantly lower. The results are discussed with respect to possible health risks for the consumer.  相似文献   

19.
Scope: Zearalenone (ZEN) and α‐zearalanol (α‐ZAL, zeranol) were studied in differentiated Caco‐2 cells and in the Caco‐2 Millicell® system in vitro to simulate their in vivo intestinal absorption and metabolism in humans. Methods and results: In addition to metabolic reduction/oxidation, extensive conjugation with glucuronic acid and sulfate of the parent compounds and their phase I metabolites was observed. The positional isomers of the glucuronides and sulfates were unambiguously identified: Sulfonation occurred specifically at the 14‐hydroxyl group, whereas glucuronidation was less specific and, in addition to the preferred 14‐hydroxyl group, involved the 16‐ and 7‐hydroxyl groups. Using the Caco‐2 Millicell® system, an efficient transfer of the glucuronides and sulfates of ZEN and α‐ZAL and their phase I metabolites into both the basolateral and the apical compartment was observed after apical administration. The apparent permeability coefficients (Papp values) of ZEN, α‐ZAL and the ZEN metabolite α‐zearalenol were determined, using an initial apical concentration of 20 μM and a permeation time of 1 h. Conclusion: According to the Papp values, the three compounds are expected to be extensively and rapidly absorbed from the intestinal lumen in vivo and reach the portal blood both as aglycones and as glucuronide and sulfate conjugates in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号