首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
现有电磁感应式非接触电能传输(ICPT)系统单位功率因数电能接收端参数设计过程需要反复仿真迭代、设计过程较为繁琐。为解决上述问题,提出一种近似解析法求解单位功率因数ICPT系统接收端参数设计方法。在分析临界导通模式(CRM)LCL谐振变换器激励下整流桥工作状态的基础上,采用微分方程建立了LCL谐振变换器的输入电压、电流的数学模型。并利用LCL谐振变换器并联谐振电容的基波电压对其实际电压进行近似处理,给出交流侧接CRM LCL谐振变换器的整流电路等效电感和等效电阻计算方法。进而提出CRM LCL谐振变换器的参数设计方法,使得CRM LCL谐振变换器工作在接近单位功率因数状态。最后,搭建2k W ICPT系统原理样机,通过实验验证了所提方法的可行性和正确性。  相似文献   

2.
在高频交流配电系统中,高效优质的电源侧功率变换具有重要意义。电感–电容–电感(inductor-capacitor-inductor,LCL)谐振逆变器是一个与负载无关的高频恒流源,能为高频配电系统实现优质高效的电源侧功率变换。但是变换器元件参数的差异以及输入的扰动使得其很难总是保持稳定的恒流状态。基于此,该文提出一种新型的基于对称可控开关电容(switched-controlled capacitor,SCC)结构的LCL谐振变换器,实现可控的恒流源输出。该文首先详细的阐述了SCC结构的分段工作周期和谐振等效电容的计算,求解得到开关占空比与等效电容的关系曲线。然后,通过等效电容与归一化角频率的关系进一步得到占空比D控制的电流增益H的计算公式及特性曲线,从而通过对占空比的控制实现对扰动的精确补偿,实现精确的恒流输出。最后,设计了一台小功率的SCC结构LCL谐振变换器样机。仿真和实验结果表明,该SCC-LCL谐振变换器能提供可控的恒流源,并同时保持较高的转换效率。  相似文献   

3.
电动汽车锂电池无线充电需要采用电磁感应耦合电能传输(ICPT)方式和恒流恒压充电模式.在电磁机构耦合系数波动或负载变化时,常规电路存在输出能力下降和输出电压、输出电流不稳定问题.基于双边LCC谐振网络,给出了一种基于开关控制并联电容(SCC)的自动谐振网络,完成了理论分析、仿真计算和实验验证,在保证高效能量传输前提下,支持负载变化时恒压或恒流输出,提高了电动汽车无线充电系统中谐振网络的灵活性与系统输出的稳定性.  相似文献   

4.
感应耦合电能传输系统动态解谐传输功率控制   总被引:2,自引:1,他引:1  
提出一种感应耦合电能传输(ICPT)系统的动态解谐传输功率控制方法.对相控电抗器进行动态切换,通过改变其导通延迟角来改变导通电流大小,使得ICPT系统的电能拾取侧谐振或解谐,在负载端获得稳定的输出电压,同时实现对传输功率的控制.导出了动态切换的相控电抗器的等效电感,分析了等效电感对输出电压及传输功率的控制作用.根据负载稳定时输出电压与导通延迟角之间的变化曲线获得了保持输出电压恒定的控制方法.相控可变电抗器实现了软开关动态切换,有效地降低了系统的功率损耗.利用该动态谐振/解谐控制方法,系统的最大功率传输性能得到了保证.计算机仿真结果验证了该方法的优良传输功率控制性能.  相似文献   

5.
电流源型LCL谐振式变换器的研究   总被引:7,自引:2,他引:5  
该文主要研究在一定条件下可实现输出恒流特性的LCL谐振变换器及其优化设计。阐述LCL谐振变换器工作于恒流源模式下的工作过程及其实现恒流特性的原理。为分析变换器工作于非谐振频率时的特性,给出不同品质因数下,开关频率变化时,变换器的电流增益特性曲线及谐振电感电流有效值、电容电压有效值的关系曲线,并分析得到品质因数的选择对变换器的恒流特性及谐振元件电压电流应力的影响,提出基于品质因数的变换器优化设计方法。最后基于所优化设计的品质因数值设计一台额定功率为80 W的LCL谐振变换器样机,实验结果验证变换器的恒流性能及品质因数值选择的合理性。  相似文献   

6.
为了满足电动汽车动力锂电池的充电需求,文中提出基于MERS(Magnetic Energy Recovery Switch,磁能再生开关)的LCL谐振型无线电能传输系统。该系统仅通过改变副边MERS的导通角,即可实现三种工作模式:恒流输出模式、恒压输出模式和最大功率输出模式。文中提出了系统模型,分析了LCL谐振型ICPT系统满足恒压、恒流、最大功率输出三种工作状态的条件;研究并建立了MERS的数学模型;搭建了Simulink仿真模型,仿真结果表明,本系统仅通过控制副边MERS的导通角α一个参数,可以实现电动汽车动力锂电池“先恒流后恒压”的充电需求,也可以实现当系统互感系数变化时系统维持在最佳工作点,而无需改变其他系统网络参数。该方案对改进电动汽车无线充电系统有一定的参考价值。  相似文献   

7.
针对L-LLC谐振型双向DC-DC变换器提出了比例-积分-谐振(PID)控制与最优轨迹控制相结合的复合最优轨迹控制策略。在系统稳态时采用PID控制减小稳态误差保持输出电压恒定;当出现负载跳变时,采用最优轨迹控制改变开关管的频率,使其在最短时间内重新达到稳态。该控制策略实现了输入侧开关管的零电压开通和输出侧整流管的零电流关断,精确预测了负载突变时的开关管导通时间,显著提高了变换器的动态性能且减小了运算的复杂度。仿真和实验结果表明,采用复合最优轨迹控制策略显著改善了L-LLC谐振型双向DC-DC变换器的动态性能。  相似文献   

8.
在感应式非接触电能传输(ICPT)系统中,为了解决负载变化影响电路输出电流以及输入阻抗角的问题,提出一种新型的T型结构的CLC补偿拓扑,并将其与串联补偿组合形成CLC-串联型补偿结构.依据基尔霍夫定律分析了CLC补偿同时实现全负载变化范围内的输出恒流特性和零输入相位角(ZPA)特性的约束条件;推导出了针对上述约束条件的谐振网络参数设计方法;分析了系统的频率稳定性,并求出了使系统频率稳定的负载边界条件;定量地讨论了使逆变桥开关管实现零电压开关(ZVS)的谐振参数调整方法.仿真和实验结果验证了CLC补偿电路具有恒流特性和ZPA特性;当负载电阻值小于使系统稳定的负载边界值时,系统可以保持频率稳定;单独调节补偿电容容值C1可以实现逆变器开关管的ZVS.  相似文献   

9.
谭兴国  张飞祥 《电力电子技术》2023,(12):113-116+120
蓄电池充电主要分为恒压充电和恒流充电两个过程,传统的谐振变换器通常采用调频控制方法实现,该方法存在调节频率过宽的问题。针对此问题,这里提出了一种在恒定频率下实现恒压和恒流输出的电路拓扑。所提组合式谐振变换器可以实现开关管的零电压开通和次级整流二极管的零电流关断,降低了开关管的工作频率范围,从而实现高效率低损耗,减少了元器件的数量,提高了变换器的功率密度。这里讨论了所提变换器的结构及工作原理、电压和电流增益及参数设计方法。最后,通过实验验证了所提谐振变换器拓扑结构的可行性。  相似文献   

10.
针对以LLC谐振变换器为主电路的锂电池充电器开关频率变化范围较大,恒压涓流充电时调节特性差的问题,提出了以电容输出滤波的半桥LCC谐振变换器作为主电路的锂电池充电电源设计方法.分析了电容输出滤波半桥LCC谐振变换器的恒流和恒压输出特性以及恒流恒压模式的转换过程,给出了变换器精确的参数设计方法.搭建了160 W的实验样机,实验结果验证了该方法是可行的.恒流模式下,当输出电压在20~80 V变化时,变换器的工作频率变化仅有3.33%,并且通过调节工作频率,可以实现空载恒压输出.变换器的开关管能在全范围内实现软开关,最高效率94.5%.  相似文献   

11.
针对充电拓扑存在开关工作频率范围过宽的问题,提出了一种适用于蓄电池充电的IPOS双LLC谐振变换器,并针对其恒压恒流输出特性展开了研究。所提变换器包含两组LLC谐振腔,通过辅助开关管S的开闭改变其中一组谐振电容参数,从而实现变换器的恒压和恒流输出转换。恒压恒流模式下所提变换器均定频工作:在恒压模式(S闭合),两组谐振腔工作在LC串联谐振点处;在恒流模式(S断开),一组谐振腔工作在LLC谐振点处实现恒流输出而另一组仍恒压输出。所提变换器实现软开关的同时实现了原边开关管和副边整流二极管的复用,并详细介绍了其工作原理、电压电流增益、设计方法和控制方案。最后,通过实验和仿真验证了所提变换器的可行性。  相似文献   

12.
针对非接触电能传输(ICPT)系统负载变换时造成原边回路电流不能保持恒定的问题,介绍了一种新型的基于LCL谐振补偿网络的ICPT系统拓扑结构。建模分析了基于LCL补偿的ICPT系统的等效电路模型,并对LCL型ICPT系统所表现出的恒流、恒压特性进行仿真分析和验证,为ICPT系统的设计和分析提供了良好思路。  相似文献   

13.
自激式LLC谐振变换器   总被引:2,自引:0,他引:2  
LLC谐振变换器可以在全负载范围内实现开关管的零电压开关和二次侧整流二极管的零电流开关,变换效率高。当它工作在谐振频率时,输出电压与负载无关。根据此特点,提出一种LLC谐振变换器的自激驱动方法,采用电流互感器并联电感的方式检测谐振电感电流,从而获得开关管的驱动信号,为了提高开关速度,对驱动电路进行了进一步的改进。针对启动电流过冲的问题,采用一种改进的LLC谐振变换器拓扑。该变换器适用于对输出电压精度要求不高的应用场合,相对于采用专用控制芯片的控制方式,自激驱动方法还具有成本低和体积小的优点。  相似文献   

14.
随着蓄能锂电池恒流充电方式的普及,针对双向车载充电机中传统电压源直流变换器不具备自然恒流输出问题,提出一种新型双向三电平倍流LCL-T谐振直流变换器,其由LCL-T谐振结合三电平级联中性点箝位有源桥构成。由于耦合变压器级联的特殊方式,有源桥各子桥臂可独立或并行工作,据此可设计不同的调制方式控制谐振腔输入电压,建立变换器一倍、二倍准恒流模式。为实现双向功率传输特性一致,谐振腔器件参数采用对称设计,进而研究了一种受归一化频率fn、品质因数Q控制的LCL-T谐振准恒流输出,并考虑无功功率控制和实现开关管零电压开通,设计满足给定准恒流输出精度的输出工况筛选算法。最后通过所搭建的仿真平台和实验样机证明所提变换器在各模式下均能实现给定精度内的准恒流输出。  相似文献   

15.
感应电能传输(IPT)系统在进行电能传输的过程中,系统负载受到外部环境以及系统不同工况的影响而发生变化,进而导致一次侧回路等效阻抗发生变化,并且一次侧回路等效阻抗的变化量难以用准确的数学表达式表示。这种情况导致IPT系统一次侧回路不谐振,逆变器工作在非软开关状态,增大了一次侧电源的容量。为解决这一问题,以基于串联-并联补偿的一次侧恒流的IPT系统为研究对象,分析系统一次侧谐振状态受二次侧整流性负载影响的原因,采用一种最小电压跟踪的调频调谐方法,以实时检测的当前降压直-直变换器输出电压值为反馈量,控制逆变器的输出电压频率,通过不断跟踪降压直-直变换器输出的电压的最小值,使系统一次侧回路恢复到谐振状态。实验结果表明,所采用的方法能够有效地恢复一次侧回路的谐振状态,降低了一次侧电源的容量需求,使逆变器工作在软开关状态。  相似文献   

16.
针对LCL型感应耦合电能传输(inductive coupled power transfer,ICPT)系统在全谐振状态且处于轻载工作模式时,逆变器输出电流波形畸变和稳态输出功率较小问题,推导分析双LCL补偿ICPT系统双谐振点特性,并基于该特性,提出一种在轻载时将系统频率切换至次谐振点的系统工作模式。在有效避免输出电流波形畸变的同时,实现了系统在变负载条件下的最大功率输出。论文首先分析单LCL网络特性,进而在双LCL补偿ICPT系统的基础上分析得到系统的两个谐振点,并且验证次谐振点可有效消除电流波形畸变的问题;接着,通过公式推导和软件仿真得到系统输出功率以及效率与负载和频率的关系;最后,通过仿真和实验,对双LCL补偿ICPT系统双谐振点工作特性、最大输出功率进行验证。  相似文献   

17.
目前多种动力蓄电池凭借着能量密度高、续航里程长和可循环使用等优势,在新能源汽车领域得到了广泛应用。针对当前以谐振电路为基础构建复合变换器应用于蓄电池充电存在输出电压范围、模式间切换、效率等不同问题,提出了一种四开关Buck-Boost与电容钳位LLC级联复用式变换器作为充电电路。该电路增益曲线的容性区和感性区均可工作,宽调频范围的容性区具有恒流特性,感性区的最佳谐振点具有恒压特性,利于实现蓄电池恒流恒压充电控制。频率与占空比的解耦控制拓宽了变换器的输出电压范围,且负载阻抗连续变化下电压增益连续,利于实现蓄电池恒流恒压平滑切换及满足不同电池充电控制方案,宽增益下的宽调控范围可减少输出纹波。拥有桥臂间移相软开关、复用桥臂增强软开关能力和降低通态电流、变压器低磁链及最终移动于最佳谐振点工作等电路特性,利于实现电能高效传输。仿真与实验结果验证了充电电路全程满足ZVS、ZCS的恒流恒压控制及充电模式间平滑切换特性。  相似文献   

18.
针对电动汽车(EV)续航较短需频繁充电及雨天充电存在安全隐患的问题,提出一种基于双LCL复合谐振网络的EV无线充电方法,通过调节逆变器的输出频率及初级谐振电容的切入和切出即可实现负载的恒流、恒压输出。一方面,无线充电可实现EV的移动式在线充电,解决了续航短、频繁充电的难题;另一方面,无线充电无物理上的直接接触,避免接触火花等安全隐患。通过仿真和实验验证了双LCL谐振型无线电能传输(WPT)系统应用在EV蓄电池充电上的可行性。  相似文献   

19.
LLC谐振变换器多路交错并联具有良好的应用前景,然而谐振元件的参数偏差会导致各路LLC谐振变换器电流不均衡的问题。为了解决这一问题,通过将二次侧的同步整流替换为可控整流方式,利用各路输出电流作为控制信号对二次侧进行脉宽调制控制,提供附加的电压增益,形成均流控制环路,保证各路的电压增益相同,从而实现多路LLC谐振变换器在相同开关频率下运行的均流调节。介绍了该控制的原理及实现方法。基于电磁暂态过程进行仿真,得出不同负载率下的电流不平衡度;同时搭建100 W的实验样机,在电流不平衡度最大的工况下,验证了该均流控制方法的可行性和有效性。  相似文献   

20.
针对无线电能传输系统中普通存在的载荷动态变化的问题,提出了一种LCC-S补偿网络结构.建立了系统的互感模型,推导了发射端、接收端的动态性能特性,分析了动态载荷工况下,系统的发射端电流、相位角、谐振频率、输出功率的效率的变化趋势.最后,搭建实验平台,采用可变电阻负载和电机负载,测试了电阻的不同阻值和电机的不同转速时的系统特性,验证了理论分析的正确性.在传输距离为5 cm且负载电阻为10 Ω~50 Ω时,实现2.3 A的发射端恒流输出.当负载电阻为30 Ω时,系统效率和传输功率分别为83.4%和16.8 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号