首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
It is shown that the mean value for the heat flow of a gravitationally-differentiated Moon of fission origin is about 13 erg cm?2 s?1 and that the heat flow varies regionally from about 3 erg cm?2s?1 to more than 45 erg cm?2s?1. These regional variations in the heat flow are caused by a non-uniform distribution of K, U and Th in the KREEP zone at the crust-upper mantle boundary and the redistribution of crustal materials and K, U and Th rich KREEP materials by basin-forming impacts. The scale of these regional variations is hundreds of km. The models presented are in accord with the Apollo 15 and 17 heat flow measurements.  相似文献   

2.
Cinematic, photometric observations of the 3B flare of August 7, 1972 are described in detail. The time resolution was 2 s; the spatial resolution was 1–2″. Flare continuum emissivity at 4950 Å and at 5900 Å correlated closely in time with the 60–100 keV non-thermal X-ray burst intensity. The observed peak emissivity was 1.5 × 1010 erg cm?2 s?1 and the total flare energy in the 3900–6900 Å range was ~1030 erg. From the close temporal correspondence and from the small distance (3″) separating the layers where the visible emission and the X-rays arose, it is argued that the hard X-ray source must have had the same silhouette as the white light flare and that the emission patches had cross-sections of 3–5″. There was also a correlation between the location of the most intense visible emissions near sunspots and the intensity and polarization of the 9.4 GHz radio emission. The flare appeared to show at least three distinct particle acceleration phases: one, occurring at a stationary source and associated with proton acceleration gave a very bluish continuum and reached peak intensity at ~ 1522 UT. At 1523 UT, a faint wave spread out at 40 km s?1 from flare center. The spectrum of the wave was nearly flat in the range 4950–5900 Å. Association of the wave with a slow drift of the microwave emission peak to lower frequencies and with a softening of the X-ray spectrum is interpreted to mean that the particle acceleration process weakened while the region of acceleration expanded. The observations are interpreted with the aid of the flare models of Brown to mean that the same beam of non-thermal electrons that was responsible for the hard X-ray bremsstrahlung also caused the heating of the lower chromosphere that produced the white light flare.  相似文献   

3.
In order to find out the physical nature of galactic X-ray sources, data on variability of 24 sources during 1964–1971 have been investigated. The fluxes of 9 sources are found to be increasing to the maximum value (for several months) and then slowly decreasing (for }3 yr). These 9 sources have been related by us to the class of X-ray novae. The X-ray nova synthetic light curve has been drawn from data on the fluxes of 9 discovered novae. Assumptions have been made on the physical nature of the X-ray novae. Between the flares the X-ray novae may be weak X-ray sources with luminosity about 1034 erg s?1. During the flares the luminosity increases to about 1038 erg s?1. The number of X-ray sources in the Galaxy is about 104–105, the average distance between them about 0.5 kpc. The object of the optical identification may be a dwarf star of no earlier spectral class than F.  相似文献   

4.
We establish limits on the total radiant energy of solar flares during the period 1980 February – November, using the solar-constant monitor (ACRIM) on board the Solar Maximum Mission. Typical limits amount to 6 × 1029 erg/s for a 32-second integration time, with 5σ statistical significance, for an impulsive emission; for a gradual component, about 4 × 1032 ergs total radiant energy. The limits lie about an order of magnitude higher than the total radiant energy estimated from the various known emission components, suggesting that no heretofore unknown dominant component of flare radiation exists.  相似文献   

5.
Numerous mass ejections from the Sun have been detected with orbiting coronagraphs. Here for the first time we document and discuss the direct association of a coronagraph observed mass ejection, which followed a 2B flare, with a large interplanetary shock wave disturbance observed at 1 AU. Estimates of the mass (2.4 × 1016 g) and energy content (1.1 × 1032 erg) of the coronal disturbance are in reasonably good agreement with estimates of the mass and energy content of the solar wind disturbance at 1 AU. The energy estimates as well as the transit time of the disturbance are also in good agreement with numerical models of shock wave propagation in the solar wind.  相似文献   

6.
Spectrograph and multiple-band polarimeter observations of the 24 April 1981 white-light flare indicate the presence of an optical continuum with intensity increasing strongly below 4000 Å. The flare emission (lines and continuum combined) is unpolarized and, at 3600 Å, exceeds the brightness of the background solar surface by 360%. Analysis of the spectrum between 3600 and 8200 Å, at a location three arc sec from the brightest point in the kernel, yields a probable temperature of 6700 K for the continuum emitting layer. The wavelength dependence of the continuum indicates emission by both negative hydrogen (H?) and Balmer continuum, with the H? probably originating in the upper photosphere at a height (above τ5000 Å = 1) in the range 200–300 km. Analysis of the Balmer lines and continuum yields an electron density 5.3 × 1013 cm?3 and a second-level hydrogen column density 1.1 × 1016 cm?2. The peak radiative output integrated over wavelength is 6.1 × 1027 erg s?1. The observed continuum intensity, if originating at a height of 300 km, implies an energy loss rate of 103 erg s?1 cm?3.  相似文献   

7.
P. R. Wilson 《Solar physics》1974,35(1):111-121
This paper considers the recent criticism by Mullan (1973) of sunspot models and the cooling mechanism which I have proposed in Papers I, II and III of this series. The discussion of the cooling produced by an idealized flow cycle has been extended to include vertical temperature gradients which are consistent with a convectively unstable atmosphere. This leads to an expression for Mullan's parameter f (the ratio in which estimates of the energy flux based on an idealized Carnot cycle should be reduced) which is appropriate to this situation. It is shown that, for a cycle similar to that of Paper III, f = 0.82, while for one which has a vertical extent of order 5 Mm, f= 0.4. Hence the energy flux which, in principle, can be transported away from a sunspot by such a cycle is conservatively estimated to be 1.1 × 1029 erg s?1 compared with a typical sunspot energy deficit of 2.2 × 1029 erg s?1. Other criticisms relating to the magnetic field amplification and the ‘cool one’ model are discussed. It is concluded that the essential features of these models remain valid and that the modifications suggested by Mullan's criticism greatly increase their applicability to the sunspot problem.  相似文献   

8.
The raditation loss of the solar chromosphere is evaluated on the basis of the Harvard Smithsonian Reference Atmosphere. The total radiative flux is found to be between 2.5 and 3.3 E6 erg cm?2 s?1. A discussion of possible heating mechanisms shows that the short period acoustic wave theory is the only one able to balance the chromospheric radiation loss and is consistent with observation.  相似文献   

9.
Coronal yellow line emission was observed by the Lyot coronagraph at the Abastumani Astrophysical Observatory. Line intensity is I = 45 erg cm?2 s?1 sr?1 Å?1, its half-width Δλ = 1.3 Å, electronconcentration n e = 7.5 × 109 cm?3.  相似文献   

10.
On July 5, 1980 the Hard X-Ray Imaging Spectrometer on board the Solar Maximum Mission observed a complex flare event starting at 22 : 32 UT from AR 2559 (Hale 16955), then at N 28 W 29, which developed finally into a 2-ribbon flare. In this paper we compare the X-ray images with Hα photographs taken at the Big Bear Solar Observatory and identify the site of the most energetic flare phenomena. During the early phases of the event the hard X-rays (>16 keV) came from a compact source located near one of the two bright Hα kernels; we believe the latter are at the footpoints of a compact magnetic loop. The kernel identified with the X-ray source is immediately adjacent to one of the principal sunspots and in fact appears to ‘rotate’ around the sunspot over 90° in the early phase of the flare. Two intense X-ray bursts occur at the site of the rotating kernel, and following each burst the loop fills with hot, X-ray emitting plasma. If the first burst is interpreted as bremsstrahlung from a beam of electrons impinging on a collisionally dominated medium, the energy in such electrons, >16 keV, is ~ 5 × 1030 erg. The altitude of the looptop is 7–10 × 103 km. The temperature structure of the flare is extremely non-homogeneous, and the highest temperatures are found in the top of the loop. A few minutes after the hard X-ray bursts the configuration of the region changes; some of the flare energy is transferred along a system of larger loops that now become the defining structure for a 2-ribbon flare, which is how the flare develops as seen in Hα. In the late, cooling phase of the flare 15 min after maximum, we find a significant component of the plasma at temperatures between 25 and 30 × 106 K.  相似文献   

11.
A portion of an east limb flare-prominence observed in Hα by NOAA/Boulder and NASA/ MSFC patrol facilities on 30 April 1974 is analyzed. Following a rapid (~2 min) achievement of a maximum mass ejection velocity of about 375 km s?1, the ascending prominence reached a height of, at least, 2 × 105 km. We use a one-dimensional, time-dependent hydrodynamic theory (Nakagawa et al., 1975) to compute the total mass (~2 × 1011 g) and energy (~4 × 1026erg) ejected during this part of this event. Theoretical aspects of the coronal response are discussed. We conclude that a moderate temperature and density pulse (factors of ten and two, respectively), for a duration of only 3 min, is sufficient for an acceptable simulation of the Hα observations and the likely coronal response to the ascending prominence and flare-related ejections. No attempt was made to simulate the additionally-important spray and surge features which probably contributed a higher level of mass and energy efflux.  相似文献   

12.
This paper contains a model of supernova remnant IC 443 and the interstellar gas surrounding it. The basis of this model is the analysis of the motion of non-spherical adiabatic shock waves due to Kompaneets (1960). Observations of adjacent Hi and Hii regions have been used by several authors to determine the density of gas in the neighbourhood of IC 443. The model gives for the explosion energy and age of IC 443, 1.8×1050 erg and 13 000 yr, respectively. The expansion velocity of IC 443 using the present model is in reasonabel agreement with observations of the remnant.  相似文献   

13.
Energy is stored when the force-free magnetic field in an active region departs from a potential field, the departure showing up as a shear in the field. As soon as the field untwists, energy will be released to produce flares. Based on this idea, we derived an analytical solution of the equation of force-free field under the assumption of a constant force-free factor, and found expressions for seven important quantities for quadrupolar sunspots: the magnetic energy of the twisted field, that of potential field, the extractable free energy ΔM, the magnetic flux, the total current, the force-free factor and the field decay factor, in terms of three observables: the field intensity, the twist angle and the distance between two spots of the same polarity. The expression for ΔM can be useful in solar prediction work. For the active region of August, 1972, we found ΔM up to 6 × 1032 erg, sufficient to supply the energy of the observed flare activity. Observations of this active region are in good general agreement with our theoretical expectations: in the entire twisting of the quadrupolar sunspot group, each spot assumes the form of a complete spiral in the clockwise direction for each of the four spots.  相似文献   

14.
The search for the still unrevealed spectral shape of the mysterious THz solar flare emissions is one of the current most challenging research issues. The concept, fabrication and performance of a double THz photometer system, named SOLAR-T, is presented. Its innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. The detecting system was constructed to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. Tests have been conducted to confirm the entire system performance, on ambient and low pressure and temperature conditions. An artificial Sun setup was developed to simulate performance on actual observations. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014–2016.  相似文献   

15.
In the set of small satellites of Saturn recently imaged by the Voyager probes, we can observe the transition from irregularly-shaped, strength-dominated objects to larger, gravity-dominated bodies with shapes roughly fitting the theoretical equilibrium figures. The transition occurs for a radius of 100±50 km, corresponding to a typical material strength of the order of 107 dynes cm?2. We discuss briefly the cases of Mimas, Enceladus, Hyperion, Phoebe and the small coorbital and F-ring shepherding moons, showing that an analysis of the shape data can often provide interesting results on the physical properties, origin and collisional history of these objects.  相似文献   

16.
The degree of association between geoeffective (SID producing) flares (hereafter called SID flares) and sunspot morphology is examined. It is found that: (1) the frequency of SID flares associated with sunspot groups is linear function of sunspot area and rate of change in area; (2) the SID flare intensity is dependent on the sunspot area and on the magnetic morphology (field geometry); (3) the probability of a sunspot group being magnetically complex (henceforth called complex ratio) is a linear function of spot area, the larger this area the more likely a group is in the βγ or δ magnetic class; (4) the complex ratio exhibits the greatest degree of association to SID flare frequency. We conclude from these results that a higher frequency of D-region ionizing flares (emitting a soft X-ray flux >2 × 10?3 erg cm?2 s?1) is likely to accompany the disk transit of large area, complex spot groups. This combination of morphological factors reflects a shearing of the associated force-free magnetic field, with accumulation of free magnetic energy to power SID flares. Mutual polarity intrusion would be one observational signature of the pre-flare energy storing process.  相似文献   

17.
Characteristic times for heating and cooling of the thermal X-ray plasma in solar flares are estimated from the time profile of the thermal X-ray burst and from the temperature, emission measure and over-all length scale of the flare-heated plasma at thermal X-ray maximum. The heating is assumed to be due to magnetic field reconnection, and the cooling is assumed to be due to heat conduction and radiation. Temperatures and emission measures derived from UCSD OSO-7 X-ray flare observations are used, and length scales are obtained from Big Bear large-scale Hα filtergrams for 17 small (subflare to Class 1) flares. The empirical values obtained for the characteristic times imply (1) that flares are produced by magnetic field reconnection, (2) that conduction cooling of the thermal X-ray plasma dominates radiative cooling and (3) that reconnection heating and conduction cooling of the thermal X-ray plasma are approximately in balance at thermal X-ray maximum. This model in combination with the data gives estimates for the electron number density (1010–1011 cm?3) and the magnetic field strength (10–100 G) in the thermal X-ray plasma and for the total thermal energy generated in a subflare (≈ 1030 erg for an Hα area ≈ 1 square degree) which agree with previous observational and theoretical estimates obtained by others.  相似文献   

18.
The formation of chemical elements in the envelopes of neutron stars is considered at the densities ?=107 to 1013 g cm?3. It is shown, that the compression of cold and hot matter leads to different chemical compositions. The compression of cold matter is accompanied by a decrease of atomic weightA, up to ?≈3×1012 g cm?3. One may distinguish the following stages during the compression of hot matter: quasi-equilibrium, when there exists both nuclear equilibrium and kinetic equilibrium in β-processes; and limited equilibrium, when the total number of nuclei is constant. It is shown that a nonequilibrium chemical composition may be formed in the envelopes of neutron stars where there is an excess of neutrons in the presence of superheavy nuclei. The nuclear energy, stored in the neutron star envelope may be sufficient to support neutron star luminosity at a level of ~ 1036 erg s?1 over a period of ~ 105 yr. Possible applications to the problem of X-ray sources and pulsars are discussed. The formation of the heavy nuclei in Supernovae explosions is considered briefly. Rough estimates are made for the differences in chemical composition of ejected matter during the explosions of stars of different masses and Supernovae of different types.  相似文献   

19.
In this paper, the presence of Faraday rotation in measurements of the orientation of a sunspot's transverse magnetic field is investigated. Using observations obtained with the Marshall Space Flight Center's (MSFC) vector magnetograph, the derived vector magnetic field of a simple, symmetric sunspot is used to calculate the degree of Faraday rotation in the azimuth of the transverse field as a function of wavelength from analytical expressions for the Stokes parameters. These results are then compared with the observed rotation of the field's azimuth which is derived from observations at different wavelengths within the Fei 5250 Å spectral line. From these comparisons, we find: the observed rotation of the azimuth is simulated to a reasonable degree by the theoretical formulations if the line-formation parameter η o is varied over the sunspot; these variations in η o are substantiated by the line-intensity data; for the MSFC system, Faraday rotation can be neglected for field strengths less than 1800 G and field inclinations greater than 45°; to minimize the effects of Faraday rotation in sunspot umbrae, MSFC magnetograph measurements must be made in the far wings of the Zeeman-sensitive spectral line.  相似文献   

20.
Grooved and hilly terrains occur at the antipode of major basins on the Moon (Imbrium, Orientale) and Mercury (Caloris). Such terrains may represent extensive landslides and surface disruption produced by impact-generatedP-waves and antipodal convergence of surface waves. Order-of-magnitude calculations for an Imbrium-size impact (1034 erg) on the Moon indicateP-wave-induced surface displacements of 10 m at the basin antipode that would arrive prior to secondary ejecta. Comparable surface waves would arrive subsequent to secondary ejecta impacts beyond 103 km and would increase in magnitude as they converge at the antipode. Other seismically induced surface features include: subdued, furrowed crater walls produced by landslides and concomitant secondary impacts; emplacement and leveling of light plains units owing to seismically induced ‘fluidization’ of slide material; knobby, pitted terrain around old basins from enhancement of seismic waves in ancient ejecta blankets; and perhaps the production and enhancement of deep-seated fractures that led to the concentration of farside lunar maria in the Apollo-Ingenii region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号