首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fractional coordinates and anisotropic temperature factors of atoms in berlinite, AlPO4 with the quartz topology, were successfully simulated in a molecular dynamics simulation (MDS) at high temperatures. Time-dependent and time-averaged atomic order parameters were analyzed in detail with the aid of spectral densities calculated from trajectory data. These parameters show characteristic behavior of the order-disorder regime for a structure change, where atoms spend most of the time oscillating around the 1-sites (or 2-sites) in the low temperature α-phase, but oscillate over both sites in the higher temperature α-phase and the β-phase. In the spectral density functions calculated for atom order parameters, a nearly zero-frequency excitation, which is accompanied by the emergence of large-scale 1 and 2 clusters, appears at the Γ point of the Brillouin zone below the transition point T o, and increases in intensity up to T o. A low-lying optic branch along Γ-M, which is strongly temperature dependent in the small q-region, is another characteristic of the spectral density functions for the β phase. The spectrum at Γ continuously reduces its frequency from 0.6 THz at temperatures far above T o to nearly 0 THz at temperatures approaching T o from above. The dynamical behavior in β berlinite rapidly but continuously changes from that in less oscillatory clusters in the vicinity of T o to that in the typical β phase at temperatures departing from T o. Received: 10 August 1998 / Revised, accepted: 18 February 1999  相似文献   

2.
Single crystalline San Carlos olivine (1 mm cube) was transformed to (Mg,Fe)2SiO4β-phase at 13.5–15 GPa, 1030–1330 °C for 0–600 min using a multi-anvil high pressure apparatus. The α-β transformation occurred by incoherent surface nucleation and interface-controlled growth and recovered partially transformed samples showed sharply defined reaction rim. The growth rate of the β-phase rim significantly decreased with time and the growth eventually ceased. TEM observations revealed that many dislocations were created in both the relict olivine just near the α-β interface and the β-phase in the rim, which show evidence for deformation caused by interfacial stresses associated with the misfit elastic strain of the transformation. The observed tangled dislocation texture in β-phase suggested that the β-phase rim was hardened and relaxation of the interfacial stress was retarded. This probably caused a localized pressure drop in the relict olivine and decreased the growth rate. Time-dependent growth rates of β-phase is possibly controlled by the rheology of β-phase, which must be considered for the prediction of the olivine metastability in the subducting slabs. Received: 24 January 1997 / Revised, accepted: 24 July 1998  相似文献   

3.
Samples of quartz-bearing rocks were heated above the α (trigonal)–β (hexagonal) phase transformation of quartz (625–950°C) to explore changes in preferred orientation patterns. Textures were measured both in situ and ex situ with neutron, synchrotron X-ray and electron backscatter diffraction. The trigonal–hexagonal phase transformation does not change the orientation of c- and a-axes, but positive and negative rhombs become equal in the hexagonal β-phase. In naturally deformed quartzites measured by neutron diffraction a perfect texture memory was observed, i.e. crystals returned to the same trigonal orientation they started from, with no evidence of twin boundaries. Samples measured by electron back-scattered diffraction on surfaces show considerable twinning and memory loss after the phase transformation. In experimentally deformed quartz rocks, where twinning was induced mechanically before heating, the orientation memory is lost. A mechanical model can explain the memory loss but so far it does not account for the persistence of the memory in quartzites. Stresses imposed by neighboring grains remain a likely cause of texture memory in this mineral with a very high elastic anisotropy. If stresses are imposed experimentally the internal stresses are released during the phase transformation and the material returns to its original state prior to deformation. Similarly, on surfaces there are no tractions and thus texture memory is partially lost.  相似文献   

4.
 Constant temperature and constant pressure molecular dynamics (MD) simulations were applied to quartz to calculate the structural details which are indeterminable in usual X-ray structure studies. The dynamics of the structural changes was analyzed by means of time-dependent atomic displacement parameters. The Si-O bonds expand with increasing temperatures through the α- and β-phases, and atoms vibrate around the α1- (or α2-) sites at lower temperatures in the α-phase, and over the energy barriers between the α1- and the α2-sites at higher temperatures in the α- and the β-phases. The ratios of time lengths spent by atoms in the α1- and α2-sites determine the apparent atomic positions as obtained in usual structure studies of α-quartz. More frequent transfer of atoms over the α1- and the α2-sites contributes positively to the thermal expansions, whereas larger amplitudes of vibrations, which carry atoms more distantly and more frequently from the β-sites, contribute negatively. The well-known steep thermal expansion in the α-phase is attributed to the additive contribution from the expansions of the Si-O bond lengths, the widening of Si-O-Si angles, and the increase of the atomic transfer-frequency between the α1- and the α2-sites. The nearly zero or negative expansion in the β-phase is caused by balancing the negative to the positive effects. The MD crystal transforms to the β-phase via a transitional state, where the α- and β-structures appear alternately with time, or coexist. The slight and continuous expansions observed right after the steep rise(s) of the volume or cell dimensions up to the nearly horizontal curve(s) are attributed to the continuous changes within the transitional state. Received: 17 July 2000 / Accepted: 13 January 2001  相似文献   

5.
6.
Variations in elastic wave velocity, low-frequency internal friction and acous-tic emission in granite were experimentally studied as a function of temperature.It is found that the wave velocity and Young‘s modulus tend to decrease with temperature.In association with the α-β transition of quartz a sharp internal friction peak can be recognized accompanied by a drastic drop in wave velocity and modulus and by a second peak of acoustic emission rate.  相似文献   

7.
The α − β transition of quartz was successfully observed with using a single sample by means of the rectangular parallelepiped resonance (RPR) method. An oriented rectangular parallelepiped of α-quartz single crystal was prepared and the resonant frequencies of 30–11 vibrational modes were measured from room temperature to 700°C. The softening of quartz crystal was observed as the significant reduction of resonant frequencies near the α–β transition. The present study is the first application of the RPR method to the study of phase transition. The complete set of elastic constants of α- and β-quartz were determined as a function of temperature by the least-squares inversion of the measured frequency data obtained by a single run. This is a merit yielded by the RPR method. It is shown near the α − β transition in both α- and β-quartz that the elastic parameters decrease proportionally to |TT 0|n , where T is temperature and T 0 is the transition temperature, 573.0°C for α-quartz and 574.3°C for β-quartz. It was also seen that linear incompressibilities K 1 = (C 11 +C 12 +C 13)/3 and K 3 = (C 33 +2C 13)/3 decrease rapidly toward the transition, whereas, shear moduli C 44, C S1 = (C 11 +C 33 -2C 13)/4 and C S3 = (C 11 -C 12)/2 = C 66 decrease only slightly. The shear modulus C S3 = C 66 increased slightly in α-quartz. The elastic properties of isotropic aggregate of quartz were calculated, and it is shown that the longitudinal wave velocity significantly decreases at the α − β transition, whereas, the shear wave velocity decreases only slightly.  相似文献   

8.
 One well-defined OH Raman band at 3651 ± 1 cm−1 and one weak feature near 3700 ± 5 cm−1 are recognized for the hydrous γ-phase of Mg2SiO4. Like the hydrous β-phase, the H2O content in the γ-phase shifts most of the corresponding silicate modes towards lower frequencies. Variations in Raman spectra of the hydrous γ-phase were investigated up to about 200 kbar at room temperature and in the range 81–873 K at atmospheric pressure. Unlike the anhydrous γ-phase, which remains intact up to at least 873 K, the hydrous γ-phase sometimes converts to a defective forsterite structure above 800 K. Although the hydrous γ-phase remains intact up to at least 800 K, Raman signals of the OH bands disappear completely above 423 K. The Raman frequency of the well-defined OH band decreases linearly with increasing temperature between 81 and 423 K. In the region of the silicate vibrations, the Raman frequencies of the two most intense bands increase nonlinearly with increasing pressure, and decrease with increasing temperature. The frequencies for all other weak bands, however, decreased linearly with increasing temperature. The latter most likely reflects the larger scatter of the data for the weak bands. Received: 27 April 2001 / Accepted: 12 September 2001  相似文献   

9.
In-situ IR measurements of OH species in quartz at high temperatures   总被引:1,自引:0,他引:1  
The nature of OH species in natural clear quartz was investigated by means of in-situ IR measurements over the temperature range –185 to 1000 °C. Reversible thermal behavior of OH species was examined for a sample pre-heated to 1000 °C for 1 hour. At room temperature, the IR spectrum of the quartz sample examined includes an intense absorption peak at 3379 cm–1 which has been assigned to an OH stretching vibration associated with Al substituting for Si (OH(Al)). The major spectral changes of the OH(Al) bond involve a systematic shift of its peak position and a decrease in its integral absorbance with temperature. A quasi-linear increase of the peak position from –185 to 400 °C is interpreted to be due to the change in the vibrational frequency of OH(Al) with hydrogen bond (H bond) distance. At higher temperatures, the IR frequency shows only a slight change, indicating a small influence of the H bond. On the other hand, the gradual decrease of the integral absorbance of OH(Al) with temperature indicates a decrease of this defect’s molar absorptivity without any reduction in defect concentration. This is interpreted to result from a decrease in dipole moment of OH(Al) with temperature. A sudden shift of the vibrational frequency from 3396 to 3386 cm–1 between 550 and 560 °C and a constant value of the integral absorbance from 535 to 570 °C were considered to be related to the change in H bond distance during the structural transformation of α-quartz to its β-form. The local environment of OH(Al) begins to change at temperatures below 570 °C, where the crystallographic α–β transition occurs. Received: 18 February 1998/ Accepted: 10 July 1998  相似文献   

10.
The high temperature (β) phases of SiO2 cristobalite and quartz are studied by performing molecular dynamics simulations using a model which allows easy analysis of tetrahedral motions. The dynamic nature of the disordered high-temperature phase of cristobalite is attributed to rigid unit mode (RUM) excitations, and it is found that the entire spectrum of RUMs is responsible for the disorder. Comparisons of the results of β-cristobalite with those of β-quartz lead to the conclusion that framework structures with high degrees of geometric flexibility, and hence many RUMs, are free to deform through cooperative tetrahedral rotations even in the limit of extremely large tetrahedral stiffnesses. Received: 10 March 1998 / Revised, accepted 15 January 1999  相似文献   

11.
Iron pressurized to 60 gigapascal (GPa) was heated with laser up to temperatures of over 2200 K. The structural changes were determined in-situ using third generation synchrotron X-ray source; the changes were recorded on an imaging plate with a monochromatic beam. The results strongly support the existence of a phase transformation of the hexagonal close-packed (hcp) structure to the new polymorph (β-phase of iron) at high pressure and temperature. We interpret the X-ray data as belonging to the double hexagonal close-packed (dhcp) structure distorted by stress due to laser heating. Received: 2 February 1998 / Accepted: 23 August 1998  相似文献   

12.
13.
We use the crystallographic orientations of quartz crystals, as determined with EBSD, to provide new evidence for the formation of clustered quartz crystals during magma crystallization. Vinalhaven is dominated by granite, with minor porphyry that formed when granite remelted during input of coeval basalt. CL zoning suggests that most quartz clusters in granite and porphyry formed by synneusis, the “swimming together” of preformed crystals. In granite, most quartz pairs in clusters have random orientations—only about 10% have parallel or Esterel twin orientations. Porphyry has fewer quartz clusters, and all pairs have approximately parallel or Esterel twin orientations. CL zoning of quartz pairs in porphyry indicates that they attached prior to a major remelting event. Interpretation of the Vinalhaven quartz clusters leads us to propose that oriented synneusis occurs during crystal accumulation on a magma chamber floor. During hindered settling, some quartz crystals should have come into contact along their dipyramidal faces. Once in contact, continued settling and loss of interstitial melt may have rotated some quartz crystals such that lattices on their dipyramidal faces matched—producing parallel and Esterel twin orientations and creating strong bonds between pairs. Only a small proportion of pairs with matched dipyramidal faces formed in the granite and, during rejuvenation to produce porphyry, only these oriented pairs survived. Hence, the presence of oriented synneusis in a plutonic rock may demonstrate a history of crystal accumulation.  相似文献   

14.
The major economic types of vein quartz and rock crystals from the Subpolar Urals were studied using electron paramagnetic resonance. Quartz is characterized by widely variable concentrations of aluminum and germanium paramagnetic centers. The average values and ranges of these concentrations increase from older to younger generations of quartz. The lowest content of aluminum and germanium paramagnetic centers is typical of granulated and primary fine-grained quartz; in coarse-grained quartz and rock crystals, the content is much higher. According to the data obtained, granulated and primary fine-grained quartz should be regarded as a potentially high-quality raw material for glass melting, because these quartz varieties are distinguished by the lowest contents of alien structural centers. Once mineral impurities eliminated, high-quality quartz concentrate can be produced from this quartz.  相似文献   

15.
 The charge compensation problem for Si−Al substitution in Brazilian natural quartz is investigated in relation to γ-irradiation darkening response and impurity contents evaluated by atomic absorption spectrometry and infrared absorption spectroscopy. Al+3 in as-grown natural quartz is compensated by Li+ and H+ to form Al−Li and Al−OH centers. The content ratios (Al−Li)/(Al−OH) and Li/(broad OH band) depend on the environmental conditions of crystal growth and influence the formation of Al-hole centers due to γ-irradiation. Al−OH centers are the dominant Al-related centers in quartz from hydrothermal origin while Al−Li centers are dominant for that of pegmatitic origin. The formation of Al-hole centers is little in quartz with a high content of broad OH band which is from low temperature hydrothermal origin. Received May 23, 1995 / Revised, accepted May 8, 1996  相似文献   

16.
A study has been made of thermoluminescence from synthetic quartz with varying hydroxyl impurity concentrations up to approximately 300 H/106 Si which are associated with a “broad-band” IR absorption in the range 2600–3700 cm−1. These hydroxyl defects are known to be important in the hydrolytic weakening of quartz. We have found only minor differences in the glow curves of unheated crystals but significant intensity increases when “wet” crystals are heated sufficiently to cause bubble formation. It would seem that the electron traps are unaffected by the bubble formation, but the electron/luminescence centre radiative recombination probability is increased.  相似文献   

17.
Single-crystal and powder electron paramagnetic resonance (EPR) spectroscopic studies of natural amethyst quartz, before and after isochronal annealing between 573 and 1,173 K, have been made from 90 to 294 K. Single-crystal EPR spectra confirm the presence of two substitutional Fe3+ centers. Powder EPR spectra are characterized by two broad resonance signals at g = ~10.8 and 4.0 and a sharp signal at g = 2.002. The sharp signal is readily attributed to the well-established oxygen vacancy electron center E 1′. However, the two broad signals do not correspond to any known Fe3+ centers in the quartz lattice, but are most likely attributable to Fe3+ clusters on surfaces. The absolute numbers of spins of the Fe3+ species at g = ~10.8 have been calculated from powder EPR spectra measured at temperatures from 90 to 294 K. These results have been used to extract thermodynamic potentials, including Gibbs energy of activation ΔG, activation energy E a, entropy of activation ΔS and enthalpy of activation ΔH for the Fe3+ species in amethyst. In addition, magnetic susceptibilities (χ) have been calculated from EPR data at different temperatures. A linear relationship between magnetic susceptibility and temperature is consistent with the Curie–Weiss law. Knowledge about the stability and properties of Fe3+ species on the surfaces of quartz is important to better understanding of the reactivity, bioavailability and heath effects of iron in silica particles.  相似文献   

18.
Bulk chemical and mineral analyses were carried out on a progressiveseries of low-pressure metamorphic pelites and psammites ofthe Bavarian Forest. The variation of rock compositions in thelower grade (=sillimanite-K-feldspar) zone with coexisting biotite+sillimanite(+K-feldspar+quartz) is essentially the same as that in thehigher grade (=cordierite-K-feldspar) zone with coexisting biotite+cordierite±sillimanite(+K-feldspar+quartz), so that nearly isochemical conditionscan be assumed for the metamorphic processes. The two metamorphiczones are related to each other through the multivariant reaction: biotite+sillimanite+quartz = cordierite+K-feldspar+H2O, but analyses of coexisting biotites and cordierites indicatethat metamorphism continues to increase even within the cordierite-K-feldsparzone. This increase is signalized through a continuous shiftof the 3-phase AFM field cordierite-biotite-sillimanite fromMg-rich to more Fe-rich compositions according to the abovereaction. At the highest grade detected the coexistence of biotite+sillimanitein the presence of quartz+K-feldspar is discontinued in favourof cordierite+garnet. Comparison with other metamorphic areas exhibiting the sameAFM assemblages leads to the tenative conclusion that the shiftdetected here is mainly due to increasing temperatures of metamorphism,whereas increasing pressures would shift the 3-phase AFM fieldin the opposite direction, that is towards more Mg-rich compositions.Thus the position of the biotite-sillimanite-cordierite fieldwithin the AFM plot can be used as indicator of metamorphicconditions in seemingly similar cordierite-sillimanite-biotite-quartz-K-feldspargneisses of variable provenance. Assuming water pressure toequal total pressure the conditions that lead to the cordierite-potashfeldspar zone studied here are estimated as 2-3 kb, 650-700°C.  相似文献   

19.
 The structural behavior of stuffed derivatives of quartz within the Li1− x Al1− x Si1+ x O4 system (0 ≤ x ≤ 1) has been studied in the temperature range 20 to 873 K using high-resolution powder synchrotron X-ray diffraction (XRD). Rietveld analysis reveals three distinct regimes whose boundaries are defined by an Al/Si order-disorder transition at x=∼0.3 and a β–α displacive transformation at x=∼0.65. Compounds that are topologically identical to β-quartz (0 ≤ x < ∼0.65) expand within the (0 0 1) plane and contract along c with increasing temperature; however, this thermal anisotropy is significantly higher for structures within the regime 0 ≤ x < ∼0.3 than for those with compositions ∼0.3 ≤ x < ∼0.65. We attribute this disparity to a tetrahedral tilting mechanism that occurs only in the ordered structures (0 ≤ x < ∼0.3). The phases with ∼0.65 ≤ x ≤ 1 adopt the α-quartz structure at room temperature, and they display positive thermal expansion along both a and c from 20 K to their α–β transition temperatures. This behavior arises mainly from a rotation of rigid Si(Al)-tetrahedra about the <100> axes. Landau analysis provides quantitative evidence that the charge-coupled substitution of Li+Al for Si in quartz dampens the α–β transition. With increasing Li+Al content, the low-temperature modifications exhibit a marked decrease in spontaneous strain; this behavior reflects a weakening of the first-order character of the transition. In addition, we observe a linear decrease in the α–β critical temperature from 846 K to near 0 K as the Li+Al content increases from x=0 to x=∼0.5. Received: 26 June 2000 / Accepted: 1 December 2000  相似文献   

20.
The thermal stabilities and decay kinetics of three peroxy radicals (Centers #1, B and B′) and three other radiation-induced defects (#3, C′ and E1′) in natural quartz from the high-grade McArthur River uranium deposit (Athabasca basin, Canada) have been investigated by isochronal and isothermal annealing experiments and electron paramagnetic resonance (EPR) spectroscopy. Single-crystal EPR spectra of isochronally (2 h) annealed quartz show that these centers all grow in intensity to 280°C and then decay with further increase in temperature, but their disappearance temperatures differ markedly and depend on the initial concentrations (e.g., Center #1 in a dark smoky quartz is annealed out at 380°C, B and B′ at 420°C and #3 and C′ at 580°C). The isothermal decay processes of these centers are all of the second order type. The calculated activation energies for the peroxy radicals [#1 and B + B′ at 0.36 (9) and 0.83 (8) eV, respectively] are smaller than those of Centers #3, C′ and E1′ [1.09 (8), 1.24 (8) and 1.45 (7) eV, respectively]. Gamma-ray irradiations of thermally bleached quartz restore a fraction of the peroxy radicals, suggesting that their diamagnetic precursors are stable up to at least 800°C. The unusual decay characteristics of “peroxy radicals” in quartz reported in the literature are shown to most likely arise from multiple radiation-induced defects. These results have implications for not only applications of peroxy radicals in quartz for EPR dating but also better understanding of thermoluminescence and cathodoluminescence spectra of this mineral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号