首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Leukaemia inhibitory factor (LIF) acts on the growth and differentiation of haematopoietic cells. By using a specific enzyme-linked immunosorbent assay for human LIF, we demonstrate that human bone marrow stromal cells produce LIF. LIF synthesis is enhanced in a dose-dependent manner after stimulation with lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMAS). LIF production in response to PMA is PKC-dependent since the two PKC inhibitors sphingosine and staurosporine markedly diminished it. Interleukin 1alpha (IL-1alpha), IL-1beta, IL-3, IL-6, IL-8, tumour necrosis factor (TNF-alpha) and SCF (both at 10 ng/ml) stimulate LIF production. By contrast macrophage colony-stimulating factor (M-CSF), granulocyte (G)-CSF, GM-CSF, basic fibroblast growth factor (bFGF), platelet-activating factor (PAF), protaglandin E2 (PGE2), leukotriene B4 (LTB4), and leukotriene C4 (LTC4) did not. These results suggest that bone marrow stromal cells might represent a major source for the cytokine-regulated local production of LIF inside human bone marrow.  相似文献   

3.
M-CSF is a macrophage-lineage-specific growth factor that causes proliferation and differentiation of progenitor cells in the bone marrow. To investigate the effects of M-CSF on more matured cells, human monocytes were cultured in the presence or absence of M-CSF for 6 days. Addition of M-CSF at more than 10(2) U/ml resulted in higher viability and caused morphological differentiation to large macrophage-like cells. LPS-induced mediator production was also compared between M-CSF-treated and control cell. Monocytes were incubated with or without M-CSF for 3 days, and were stimulated with 1 microgram/ml of LPS for 2 days. IL-1 beta was not detected in the both culture supernatants, and PGE2 production was not influenced by M-CSF. However, amounts of G-CSF, GM-CSF, IL-6, and TNF-alpha produced in response to 1 microgram/ml of LPS were 1.5 to 2 times greater from monocytes treated with 10(4) U/ml of M-CSF than from control cells. The priming effect of M-CSF on LPS-induced cytokine production was found to require 3-day preincubation, and reached a maximum at the concentration of 10(4) U/ml. M-CSF-treated cells responded to a 10 times lower concentration of LPS than control cells in terms of cytokine production. M-CSF was also shown by flowcytometric analysis to influence the expression of CD14, a receptor for LPS, which might render monocytes more sensitive to LPS.  相似文献   

4.
Interferon-gamma (IFN-gamma) has been shown to inhibit interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha) stimulated bone resorption by strongly stimulating nitric oxide (NO) synthesis. Here we studied the mechanisms underlying this inhibition. Osteoclasts were generated in 10-day cocultures of mouse osteoblasts and bone marrow cells and the effect of cytokine-induced NO on osteoclast formation and activity was determined. Stimulation of the cocultures with IL-1 beta, TNF-alpha and IFN-gamma markedly enhanced NO production by 50- to 70-fold, and this was found to be derived predominantly from the osteoblast cell layer. When high levels of NO were induced by cytokines during early stages of the cocultures, osteoclast formation was virtually abolished and bone resorption markedly inhibited. Cytokine stimulation during the latter stages of coculture also resulted in inhibition of bone resorption, but here the effects were mainly due to an inhibitory effect on osteoclast activity. At all stages, however, the inhibitory effects of cytokines on osteoclast formation and activity were blocked by the NO-synthase inhibitor L-NMMA. Further investigations suggested that the NO-mediated inhibition of osteoclast formation was due in part to apoptosis of osteoclast progenitors. Cytokine stimulation during the early stage of the culture caused a large increase in apoptosis of bone marrow cells, and these effects were blocked by L-NMMA and enhanced by NO donors. We found no evidence of apoptosis in osteoclasts exposed to high levels of cytokine-induced NO at any stage in the culture, however, or of apoptosis affecting mature osteoclasts exposed to high levels of NO, suggesting that immature cells in the bone marrow compartment are most sensitive to NO-induced apoptosis. In summary, these studies identify NO as a potentially important osteoblast-osteoclast coupling factor which has potent inhibitory effects on bone resorption. These actions, in turn, are mediated by inhibition of osteoclast formation probably due to NO-induced apoptosis of osteoclast progenitors and by inhibition of the resorptive activity of mature osteoclasts.  相似文献   

5.
We previously found that human melanoma (A375M) and human breast cancer (MDA-MB-231) cells formed osteolytic bone metastasis in vivo. These cancer cells produced interleukin-11 (IL-11) by themselves and stimulated its production from osteoblasts. Interleukin-11 could increase the number of osteoclasts and raise the calcium concentration in the medium of neonatal murine calvaria organ culture, indicating bone resorption in vitro. Therefore, IL-11 could play an important role in the promotion of osteolysis at the site of bone metastasis. In the present study, we used the calvaria culture system to try to clarify the mechanisms of IL-11-mediated bone resorption. The murine calvaria expressed both the specificity-determining alpha subunit and the signal-transducing beta subunit (gp130) of the IL-11 receptor. When IL-11 was added to the calvaria culture, the concentrations of prostaglandin E2 (PGE2) was elevated. Pretreatment of calvaria with cyclooxygenases inhibitors (e.g., indomethacin, NS-398, and dexamethasone) suppressed the production of PGE2 and the bone resorption induced by IL-11. Addition of exogenous PGE2 overcame the inhibitory effect of cyclooxygenases inhibitors and promoted bone resorption. These results indicate that IL-11 promotes bone resorption through a PGE2 synthesis-dependent mechanism and that cyclooxygenases inhibitors could be interesting drugs to suppress IL-11-mediated osteolytic bone metastasis of cancer cells.  相似文献   

6.
7.
OBJECTIVE: Interleukin-11 (IL-11), an IL-6-type cytokine, is thought to be involved in bone resorption via osteoclast differentiation. Here, we characterized the combined effect of IL-1alpha and tumor necrosis factor alpha (TNFalpha), major cytokines in the rheumatoid synovium, on the production of IL-11 by cultured rheumatoid synovial fibroblasts (RSFs). METHODS: The amounts of IL-11, IL-6, and prostaglandin E2 (PGE2) were measured by enzyme-linked immunosorbent assay. IL-11 messenger RNA (mRNA) levels were determined by Northern blotting. Protein expression of cytosolic phospholipase A2 (cPLA2), cyclooxygenase 2 (COX-2), and protein kinase C (PKC) isoforms were determined by Western blotting. RESULTS: IL-1alpha and TNFalpha synergistically stimulated RSFs to produce IL-11 at both the mRNA and protein levels. This synergistic effect was completely inhibited by indomethacin. The inhibition was prevented by PGE2, indicating that the synergistic effect of IL-1alpha and TNFalpha was PGE2-mediated. The cooperative effects of these 2 cytokines were also observed in the production of PGE2 and the expression of 2 regulatory enzymes in PGE2 production, cPLA2 and COX-2. The synergistic induction of IL-11 by IL-1alpha and TNFalpha was completely inhibited by a potent inhibitor of all isoforms of PKC, GF109203X. In contrast, phorbol myristate acetate, which induced a down-regulation of PKC, degrading all PKC isoforms except atypical PKC, did not affect the induction of IL-11. CONCLUSION: These findings suggest that IL-1alpha and TNFalpha synergistically stimulate the production of IL-11 via their effects on PGE2 production in the rheumatoid joint, and that atypical PKC may be another target for down-regulation of IL-11, the bone resorption-associated cytokine.  相似文献   

8.
Mice homozygous for the osteopetrosis (op) mutation are characterized by defective differentiation of osteoclasts, monocytes, and tissue macrophages due to a lack of functional macrophage colony-stimulating factor (M-CSF/CSF-1) activity. In young (4-6 week-old) op/op mice, the bone marrow cavities were filled with spongious bone. In aged (50-72 week-old) op/op mice, the bone marrow cavities were markedly reconstructed and marrow hematopoiesis was expanded. Numbers of osteoclasts and bone marrow macrophages in aged op/op mice were increased but most of the osteoclasts were mononuclear cells and showed poorly developed ruffled borders. Lysosomes of bone marrow macrophages were laden with abundant crystalloid materials in aged op/op mice and aged littermate mice. However, such macrophages were not observed in young op/op mice nor in young littermates. In contrast to the marked increase in numbers of osteoclasts and macrophages in the bone marrow, the number of Kupffer cells in the liver did not increase in aged op/op mice. Kupffer cells in aged op/op mice did not show ultrastructural maturation with aging and contained a few crystalloid structures. M-CSF administration to aged op/op mice induced numerical increases in Kupffer cells and lysosomes in Kupffer cells, disappearance of crystalloid structures in lysosomes of Kupffer cells, and the development of ruffled border in osteoclasts. These findings indicate that M-CSF-independent mechanisms for macrophage and osteoclast development in aged op/op mice are restricted to bone marrow. M-CSF plays important roles in the differentiation of macrophage and osteoclast and the production and function of lysosomes.  相似文献   

9.
Interleukin 4 (IL-4) is an immune cytokine that inhibits bone resorption in mice and suppresses osteoclastic cell formation in vitro through an undefined mechanism. In this report, we have established the cellular identity of the IL-4 target cell using a variety of bone marrow/stromal cell coculture methods. Initially, we found that the majority of IL-4's inhibition of osteoclastic cell formation was due to its effect on bone marrow cells, not stromal cells. Consequently, bone marrow macrophages were used as osteoclastic cell progenitors after they had been transiently exposed to IL-4 (48 h), before the addition of stromal cells, 1,25-dihydroxyvitamin D3, and dexamethasone. In this circumstance, IL-4 impaired subsequent osteoclastic cell formation, suggesting that the macrophage may be potentially targeted by many factors known to influence osteoclast formation. Consequently, we discovered that interferon-gamma (IFN gamma), prostaglandin E (PGE), and cell-permeant cAMP analogs also impacted osteoclastic cell formation when used to selectively treat bone marrow macrophages. IFN gamma suppressed osteoclastic cell formation, whereas PGE and cAMP analog treatment led to the formation of significantly enlarged osteoclastic cells. Importantly, PGE antagonized the inhibitory effects of both IL-4 and IFN gamma on the osteoclastic cell-forming potential of bone marrow macrophages. Collectively, these findings establish bone marrow macrophages as osteoclastic cell precursors with the degree of their commitment to the osteoclast pathway sensitive to the effects of soluble mediators, including IL-4, IFN gamma, and PGE.  相似文献   

10.
Actinobacillus actinomycetemcomitans is considered to be an aetiological agent in various forms of periodontitis, with serotype b-specific carbohydrate being the immunodominant antigen of A. actinomycetemcomitans Y4 in high-responder patients. Lipopolysaccharide (LPS) of the organism may also be an important antigen. The purpose of the present study was to clarify the importance of LPS as an antigen of A. actinomycetemcomitans. Twenty patients who had high antibody titres to strain Y4 were selected, and the reactivity of their sera with LPS was determined by ELISA and Western blotting. Two groups of patients were observed: group 1 had high IgG titres only to serotype b strain, whereas group 2 had high IgG titres to serotypes a, b and c strains. The results of adsorption tests showed that anti-A. actinomycetemcomitans Y4 antibody in group 1 patients mostly consisted of antibody reactive with the serotype b-specific carbohydrate, whereas the antibody in group 2 patients mostly consisted of antibody reactive with the LPS of all serotypes. These data show that anti-LPS antibody is present and predominant in anti-A. actinomycetemcomitans Y4 antibody from some high-responder patients, and indicate an important role for LPS as an antigen in the humoral immune response to the organism.  相似文献   

11.
The study of osteoclast integrins has been previously hampered by the lack of a source of large numbers of purified osteoclasts. Osteoclastoma, a human giant cell tumor of bone, supplied a rich source of osteoclasts within a tissue containing many diverse cell types. Osteoclastoma integrin immunostaining confirmed the presence of the integrin alpha v beta 3 complex and the alpha 2 and beta 1 integrin subunits on osteoclasts. However, weak integrin expression, for example with alpha v beta 5, was difficult to interpret. Purification with magnetic beads coated with vitronectin receptor monoclonal antibody (13C2) enabled osteoclast membranes to be isolated with high purity and yield (57%) from osteoclastoma tissue. Positively (osteoclast-enriched) selected membranes were biochemically assessed for integrin expression by immunoprecipitation and visualization by non-radioactive enhanced chemiluminescence. alpha 1, alpha 4, alpha 6, alpha 8, alpha M, alpha X, gpIIb, beta 4, beta 6, and beta 8 integrin chains were undetectable at a sensitivity of 1 ng. alpha 3, alpha 5, alpha L, beta 2, and alpha v beta 5 were found in the negatively selected osteoclastoma tissue but not in the positively purified osteoclast membranes. The presence of alpha v beta 1 and alpha 2 beta 1 dimers was demonstrated biochemically on the immunoisolated osteoclast membranes. Osteoclast alpha v beta 3 isolation by Arg-Gly-Asp (RGD) affinity chromatography for NH2-terminal amino acid sequencing confirmed that the osteoclast vitronectin receptor was identical to that previously characterized on other cell types. In situ hybridization using human alpha v riboprobes in osteoclasts from human and rodent bone further demonstrated the high level and specificity of expression of alpha v vitronectin receptor in osteoclasts.  相似文献   

12.
Osteoclasts are hematopoietic cells essential for bone resorption. To study the derivation of these interesting cells, we developed a stepwise culture system where stromal cells promote embryonic stem (ES) cells to differentiate into mature osteoclasts. Three phases to this differentiation process include (1) induction of hematopoiesis, along with the generation of osteoclast precursors, (2) expansion of these precursors, and (3) terminal differentiation into mature osteoclasts in the presence of 1alpha,25-dihydroxyvitamine D3 . Although the transition of ES cells to the hematopoietic lineage was not blocked by an antibody to c-fms, later phases were dependent on a signaling through this transmembrane receptor as indicated by the finding that anti-c-fms treatment of cells in the second and third phases reduced the number of osteoclasts produced by 75% and more than 99%, respectively. Blockade of signaling through another tyrosine kinase-type receptor, c-kit, did not affect any stages of osteoclastogenesis, although generation of other hemopoietic lineages was reduced to less than 10% of untreated. When small numbers of ES cells were directly cultured under conditions that promote osteoclast differentiation, tartrate-resistant acid phosphatase-positive multinucleated cells were observed at the edge but not inside of colonies. This suggests that some types of cell-cell interactions may inhibit development of mature osteoclasts. The culture system developed here provides an important tool for osteoclast biology.  相似文献   

13.
The stimulation of intestinal epithelial cell cyclooxygenase (COX) enzymes with inflammatory agents and the inhibition of COX-1 and COX-2 enzymes has the potential to increase understanding of the role of these enzymes in intestinal inflammation. The aim of this study was to determine the contributions of COX-1 and -2 to the production of specific prostanoids by unstimulated and stimulated intestinal epithelial cells. Cultured enterocytes were stimulated with lipopolysaccharide (LPS), interleukin-1 (IL-1)beta (IL-1 beta), and calcium ionophore (Ca Ion), with and without COX inhibitors. Valerylsalicylic acid (VSA) was employed as the COX-1 inhibitor, and SC-58125 and NS398 were used as the COX-2 inhibitors. Prostanoids were quantitated by Elisa assay. Western immunoblotting demonstrated the presence of constitutive COX-1 and inducible COX-2 enzyme. Unstimulated prostanoid formation was not decreased by the COX-1 inhibitor. All of the stimulants evaluated increased prostaglandin E2 (PGE2) production. Only Ca Ion stimulated prostaglandin D2 (PGD2) production while IL-1 beta, and Ca Ion, but not LPS, increased prostaglandin F2 alpha (PGF2 alpha) formation. Ca Ion-stimulated prostanoid formation was uniformly inhibited by COX-2, but not COX-1, inhibitors. IL-1 beta-stimulated PGE2 and PGE2 alpha formation was significantly decreased by both COX-1 and COX-2 inhibitors. VSA, in a dose-dependent manner, significantly decreased IL-1 beta-stimulated PGE2 and PGF2 alpha production. Unstimulated prostanoid formation was not dependent on constitutive COX-1 activity. The stimulation of intestinal epithelial cells by Ca Ion seemed to uniformly produce prostanoids through COX-2 activity. There was no uniform COX-1 or COX-2 pathway for PGE and PGF2 alpha formation stimulated by the inflammatory agents, suggesting that employing either a COX-1 or COX-2 inhibitor therapeutically will have varying effects on intestinal epithelial cells dependent on the prostanoid species and the inflammatory stimulus involved.  相似文献   

14.
The pleiotropic cytokine interleukin-11 (IL-11) stimulates osteoclast formation in vitro, but it is not known whether it influences other steps in the bone-resorptive cascade. Using a variety of in vitro model systems for studying bone resorption we have investigated the effects of IL-11 on 1) osteoclast formation, fusion, migration, and activity; and 2) osteoblast-mediated osteoid degradation. The involvement of matrix metalloproteinases (MMPs) and products of arachidonic acid metabolism in IL-11-mediated resorption were also assessed. We first examined the bone-resorptive effects of IL-11 by assessing 45Ca release from neonatal mouse calvarial bones. IL-11 dose-dependently stimulated bone resorption with an EC50 of 10(-10) M. The kinetics of IL-11-mediated 45Ca release demonstrated that it was without effect for the first 48 h of culture, but by 96 h, it stimulated 45Ca release to the same level as that produced by 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] (a hormone that stimulates osteoclast formation and activity). IL-11 also produced a dose-dependent increase in osteoblast-mediated type I collagen degradation with a maximum of 58.0 +/- 6.2% at 5 x 10(-9) M; this effect of IL-11 was less than that produced by 1,25-(OH)2D3 (76.5 +/- 7.1%) and was prevented by an inhibitor of MMPs, but not those blocking arachidonic acid metabolism. We then tested the effects of IL-11 on isolated mouse osteoclasts cultured on ivory slices in the presence and absence of primary mouse osteoblasts. IL-11 had no effect on isolated osteoclast activity even in coculture with primary osteoblasts. We then examined the effects of IL-11 on the formation of osteoclast-like multinucleate cells in mouse bone marrow cultures and the resorptive activity of such cultures using ivory as a substrate. IL-11 dose-dependently increased 1) the number of tartrate-resistant acid phosphatase-positive osteoclast-like multinucleate cells and 2) the surface area of lacunar resorption, although the effects were less than that of 1,25-(OH)2D3. The effect of IL-11 on bone marrow lacunar resorption was prevented by a combination of inhibitors of 5-lipoxygenase and cyclooxygenase. In 17-day-old metatarsal bones, IL-11 prevented the migration of (pre)osteoclasts to future resorption sites, whereas their fusion was unaffected. These results provide strong evidence that IL-11 stimulates bone resorption by enhancing osteoclast formation and osteoblast-mediated osteoid degradation rather than stimulating osteoclast migration and activity. Our data also suggest that the stimulatory effects of IL-11 involve both MMPs and products of arachidonic acid metabolism.  相似文献   

15.
Mobilization of bone marrow eosinophils is a critical early step in their trafficking to the lung during allergic inflammatory reactions. We have shown previously that the cytokine interleukin (IL)-5, generated during an allergic inflammatory reaction in the guinea pig, acts systemically to mobilize eosinophils from the bone marrow. Here, we have investigated the mechanisms underlying this release process. Examination by light and electron microscopy revealed the rapid migration of eosinophils from the hematopoietic compartment and across the bone marrow sinus endothelium in response to IL-5. Using an in situ perfusion system of the guinea pig hind limb, we showed that IL-5 stimulated a dose-dependent selective release of eosinophils from the bone marrow. Eosinophils released from the bone marrow in response to IL-5 expressed increased levels of beta2 integrin and a decrease in L-selectin, but no change in alpha4 integrin levels. A beta2 integrin-blocking antibody markedly inhibited the mobilization of eosinophils from the bone marrow stimulated by IL-5. In contrast, an alpha4 integrin blocking antibody increased the rate of eosinophil mobilization induced by IL-5. In vitro we demonstrated that IL-5 stimulates the selective chemokinesis of bone marrow eosinophils, a process markedly inhibited by two structurally distinct inhibitors of phosphatidylinositol 3-kinase, wortmannin and LY294002. Wortmannin was also shown to block eosinophil release induced by IL-5 in the perfused bone marrow system. The parallel observations on the bone marrow eosinophil release process and responses in isolated eosinophils in vitro suggest that eosinophil chemokinesis is the driving force for release in vivo and that this release process is regulated by alpha4 and beta2 integrins acting in opposite directions.  相似文献   

16.
The effect of Pasteurella multocida toxin (PMT) on porcine osteoclast and osteoblast differentiation was studied using in vitro cell culture systems. When grown in the presence of Vitamin D3, isolated porcine bone marrow cells formed multinucleated cells with features characteristic of osteoclasts. Exposure of bone marrow cells to Vitamin D3 and PMT during growth resulted in formation of increased numbers and earlier appearance of osteoclasts compared to controls. Ultrafiltered medium form PMT-treated cells likewise increased osteoclast numbers, suggesting that a soluble mediator may be involved in the action of PMT. When cell cultures were treated with fluorescein-labeled PMT, fluorescence was found within the cytoplasm of small, round cells that did not resemble either osteoclasts or osteoclastic precursor cells. Cultures of porcine bone marrow cells exposed to dexamethasone, ascorbic acid, and beta-glycerophosphate developed into osteoblastic cells that formed multilayered, mineralized nodules. Exposure of osteoblastic cultures to low concentration of PMT resulted in retarded cell growth, formation of decreased numbers of nodules and minimal to no mineralization in the nodules; higher concentration of PMT resulted in increased cellular debris and poor growth of cells, with no nodule formation. These findings suggest that PMT may induce turbinate atrophy in pigs by increasing osteoclast numbers and inhibiting osteoblastic bone formation. The effect of PMT on osteoclastic differentiation and growth may not be due to a direct effect on preosteoclastic cells, but rather due to alterations in the soluble mediator secretion by marrow stromal cells.  相似文献   

17.
Lipopolysaccharide (LPS) is a potent bone resorbing factor. We investigated the effect of LPS on osteoclast formation in three types of cultures. LPS inhibited osteoclast formation induced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], in a dose-dependent manner, in cultures of whole bone marrow cells without dexamethasone. LPS increased the amount of granulocyte-macrophage colony stimulating factor (GM-CSF) in the culture supernatant, and anti-GM-CSF antiserum almost abolished the inhibition of osteoclast formation by LPS, thereby indicating that GM-CSF generated by treatment with LPS may be responsible for the inhibition of osteoclast formation. In cultures with dexamethasone, the amount of GM-CSF was decreased to one-third of that with 1,25(OH)2D3 alone and was not changed by treatment with LPS. In this culture system, LPS enhanced osteoclast formation. In the coculture system of nonadherent bone marrow cells and a stromal cell line in the presence of 1,25(OH)2D3 and dexamethasone, where no detectable GM-CSF was present in the supernatant, LPS markedly enhanced osteoclast formation, whereas exogenously added GM-CSF (100 pg/ml) almost completely inhibited osteoclast formation. LPS stimulated pit formation on dentin slices by the osteoclast-like cells formed by in vitro culture system.  相似文献   

18.
Interleukin-1 (IL-1) and tumor necrosis factor (TNF), two pleiotropic cytokines produced in inflammatory processes, inhibit bone matrix biosynthesis and stimulate prostanoid formation in osteoblasts. In the present study, the importance of prostaglandin formation in IL-1 and TNF-induced inhibition of osteocalcin and type I collagen formation has been examined. In the human osteoblastic cell line MG-63, IL-1 alpha (10-1000 pg/ml), IL-1 beta (3-300 pg/ml) and TNF-alpha (1-30 ng/ml) stimulated prostaglandin E2 (PGE2) formation and inhibited 1,25(OH)2-vitamin D3-induced osteocalcin biosynthesis as well as basal production of type I collagen. Addition of PGE2 or increasing the endogenous formation of PGE2 by treating the cells with arachidonic acid, bradykinin, Lys-bradykinin or des-Arg9-bradykinin, did not affect osteocalcin and type I collagen formation in unstimulated or 1,25(OH)2-vitamin D3-stimulated osteoblasts. Four non-steroidal antiinflammatory drugs, indomethacin, flurbiprofen, naproxen and meclofenamic acid, inhibited basal, IL-1 beta- and TNF-alpha-stimulated PGE2 formation in the MG-63 cells without affecting IL-1 beta- or TNF-alpha-induced inhibition of osteocalcin and type I collagen formation. In isolated, non-transformed, human osteoblast-like cells, IL-1 beta and TNF-alpha stimulated PGE2 formation and concomitantly inhibited 1,25(OH)2-vitamin D3-stimulated osteocalcin biosynthesis, without affecting type I collagen formation. In these cells, indomethacin and flurbiprofen abolished the effects of IL-1 beta and TNF-alpha on prostaglandin formation without affecting the inhibitory effects of the cytokines on osteocalcin biosynthesis. These data show that IL-1 and TNF inhibit osteocalcin and type I collagen formation in osteoblasts independently of prostaglandin biosynthesis and that non-steroidal antiinflammatory drugs do not affect the effects of IL-1 and TNF on bone matrix biosynthesis.  相似文献   

19.
Interleukin-6 (IL-6) is thought to be a major mediator of the host's defense against infection, and it regulates immune responses in inflamed tissue. In this study, we investigated the regulation of IL-6 production in human gingival fibroblasts (HGF) and human periodontal ligament fibroblasts (HPLF). Pro-inflammatory cytokines including interleukin (IL)-1 alpha, IL-1 beta and tumor necrosis factor (TNF)-alpha stimulated IL-6 production in HGF and HPLF in a time- and dose-dependent manner. This IL-1 alpha, IL-1 beta, or TNF-alpha-induced IL-6 production was enhanced, but the cAMP accumulation they induced was inhibited by the addition of indomethacin. This result suggests that endogenous prostaglandin E2 (PGE2) partially inhibits IL-1 or TNF-alpha-induced IL-6 production and that the enhancement of IL-6 production by IL-1 or TNF-alpha may not be caused through endogenous PGE2-induced cAMP-dependent pathway. Dexamethasone (DEX), a glucocorticoid which is a inhibitor of nuclear factor kappa B (NF-kappa B activation, markedly inhibited IL-1 (alpha or beta) or TNF-alpha-induced IL-6 production; so this production may be partially mediated through NF-kappa B. IL-1 (alpha or beta) and TNF-alpha enhanced IL-6 production synergistically. IL-6 production in HGF or HPLF stimulated with IL-1 beta was augmented by the addition of interferon (IFN)-gamma, but was slightly suppressed by the addition of IL-4. Endogenous IL-6 enhanced IL-1 (alpha or beta)-induced IL-6 production in the presence of IL-6 soluble receptor (IL-6sR). Accordingly, in inflamed periodontal tissues, gingival fibroblasts and periodontal ligament fibroblasts stimulated with pro-inflammatory cytokines such as IL-1 or TNF-alpha, may produce IL-6, and this production can be differentially modulated by endogenous PGE2, IL-6sR, T cell-derived cytokines such as IFN-gamma or IL-4, and glucocorticoids.  相似文献   

20.
OBJECTIVE: To investigate the participation of osteoclast-like bone resorbing cells in the joint destruction of murine collagen induced arthritis (CIA). METHODS: After induction of CIA in DBA/1J mice, a histological time course study was conducted on paw sections stained for tartrate resistant acid phosphatase (TRAP), a marker of osteoclasts. Cells from arthritic paws were cultured in vitro with or without indomethacin (IM) or anti-interleukin 6 neutralizing antibody (anti-IL-6), and stained for TRAP. Levels of prostaglandin E2 (PGE2), IL-1beta, IL-6, and tumor necrosis factor-alpha in the culture supernatants were determined by ELISA. The bone resorbing ability of these cells was examined on dentine slices. In control experiments, cells of normal paws or of arthritic tibiae were cultured in the same manner. RESULTS: TRAP positive osteoclast-like cells were detected late in the development of bone lesions at every eroded front in the pannus-bone and the pannus-subchondral bone junctions of arthritic joints. In vitro, cells of arthritic paws formed bone resorbing osteoclast-like cells spontaneously. However, the control culture failed to form these cells. PGE2 and IL-6 were detected at higher levels in arthritic culture than in control culture. Although both indomethacin and anti-IL-6 reduced osteoclast-like cell formation and indomethacin inhibited PGE2 synthesis, indomethacin failed to reduce IL-6. CONCLUSION: These findings suggest the direct participation of osteoclast-like cells in the joint destruction of CIA, the locally enhanced activity of osteoclast-like cell differentiation in arthritic paws, and the participation of prostaglandins and prostaglandin-independent IL-6 in this differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号