首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intrinsically stretchable light‐emitting diodes (LEDs) are demonstrated using organometal‐halide‐perovskite/polymer composite emitters. The polymer matrix serves as a microscale elastic connector for the rigid and brittle perovskite and induces stretchability to the composite emissive layers. The stretchable LEDs consist of poly(ethylene oxide)‐modified poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate as a transparent and stretchable anode, a perovskite/polymer composite emissive layer, and eutectic indium–gallium as the cathode. The devices exhibit a turn‐on voltage of 2.4 V, and a maximum luminance intensity of 15 960 cd m?2 at 8.5 V. Such performance far exceeds all reported intrinsically stretchable LEDs based on electroluminescent polymers. The stretchable perovskite LEDs are mechanically robust and can be reversibly stretched up to 40% strain for 100 cycles without failure.  相似文献   

2.
A novel high‐performance flexible gel polymer electrolyte (FGPE) for supercapacitors is prepared by a freeze‐drying method. In the presence of 1‐butyl‐3‐methylimidazolium chloride (BMIMCl) ionic liquid, Li2SO4 can easily be added into poly(vinyl alcohol) (PVA) aqueous solution over a large concentration range. The resultant FGPE demonstrates considerably high ionic conductivity (37 mS cm−1) and a high fracture strain at 100% elongation at the optimal weight ratio of PVA:BMIMCl:Li2SO4 = 1:3:2.2. The supercapacitor fabricated with the resultant FGPE and activated carbon electrodes shows an electrode‐specific capacitance of 136 F g−1 with a stable operating voltage of 1.5 V, a maximum energy density of 10.6 Wh kg−1, and a power density of 3400 W kg−1. Double supercapacitors in series can efficiently drive a light emitting diode (LED) bulb for over 5 min and the retention of the specific capacitance reaches 90% even after 3000 charge–discharge cycles. The ionic conductivity and charge–discharge behaviors of the resultant FGPE are not affected by bending up to 180°. The flexible supercapacitor device shows only a small capacitance loss of 18% after 1000 cycles of 135° bending.  相似文献   

3.
In the last few years the GaN‐based white light‐emitting diode (LED) has been remarkable as a commercially available solid‐state light source. To increase the luminescence power, we studied GaN LED epitaxial materials. First, a special maskless V‐grooved c‐plane sapphire was fabricated, a GaN lateral epitaxial overgrowth method on this substrate was developed, and consequently GaN films are obtained with low dislocation densities and an increased light‐emitting efficiency (because of the enhanced reflection from the V‐grooved plane). Furthermore, anomalous tunneling‐assisted carrier transfer in an asymmetrically coupled InGaN/GaN quantum well structure was studied. A new quantum well structure using this effect is designed to enhance the luminescent efficiency of the LED to ~72%. Finally, a single‐chip phosphor‐free white LED is fabricated, a stable white light is emitted for currents from 20 to 60 mA, which makes the LED chip suitable for lighting applications.  相似文献   

4.
A new concept for the design of self‐toughening thermoplastic polymers is presented. The approach involves the incorporation of plasticizer‐filled microcapsules (MCs) in an intrinsically rigid and brittle matrix polymer. The intriguing adaptability that this simple tactic enables is demonstrated with composites composed of a poly(lactic acid) (PLA) matrix and 5–20% w/w poly(urea‐formaldehyde) (PUF) MCs that contained hexyl acetate as plasticizer. At low strain (<1.5%), the glassy PLA/MC composites remain rigid, although the intact MCs reduce the Young's modulus and tensile strength by up to 50%. While the neat PLA shows brittle failure at a strain of around 2.5%, the composites yield in this regime, because the MCs rupture and release their plasticizing cargo. This effect leads up to 25‐fold increase of the elongation at break and 20‐fold increase of the toughness vis‐à‐vis the neat PLA, while the impact on modulus and ultimate stress is much smaller. Ballistic impact tests show that the self‐toughening mechanism also works at much higher strain rates than applied in tensile tests and the operating mechanism is corroborated through systematic thermomechanical studies that involved dynamic mechanical testing and thermal analysis.  相似文献   

5.
An air‐stable transparent conductive film with “quasi‐freestanding” graphene supported on horizontal single walled carbon nanotubes (SWCNTs) arrays is fabricated. The sheet resistance of graphene films stacked via layer‐by‐layer transfer (LBL) on quartz, and modified by 1‐Pyrenebutyric acid N‐hydroxysuccinimide ester (PBASE), is reduced from 273 Ω/sq to about 76 Ω/sq. The electrical properties are stable to heat treatment (up to 200 ºC) and ambient exposure. Organic light‐emitting diodes (OLEDs) constructed of this carbon anode (T ≈ 89.13% at 550 nm) exhibit ≈88% power efficiency of OLEDs fabricated on an ITO anode (low turn on voltage ≈3.1 eV, high luminance up to ≈29 490 cd/m2, current efficiency ≈14.7 cd/A). Most importantly, the entire graphene‐on‐SWCNT hybrid electrodes can be transferred onto plastic (PET) forming a highly‐flexible OLED device, which continues to function without degradation in performance at bending angles >60°.  相似文献   

6.
On‐chip strain engineering is highly demanded in 2D materials as an effective route for tuning their extraordinary properties and integrating consistent functionalities toward various applications. Herein, rolling technique is proposed for strain engineering in monolayer graphene grown on a germanium substrate, where compressive or tensile strain could be acquired, depending on the designed layer stressors. Unusual compressive strains up to 0.30% are achieved in the rolled‐up graphene tubular structures. The subsequent phonon hardening under compressive loading is observed through strain‐induced Raman G band splitting, while distinct blueshifts of characteristic peaks (G+, G?, or 2D) can be well regulated on an asymmetric tubular structure with a strain variation. In addition, due to the strong confinement of the local electromagnetic field under 3D tubular geometry, the photon–phonon interaction is highly strengthened, and thus, the Raman scattering of graphene in rolled‐up tubes is enhanced. Such an on‐chip rolling approach leads to a superior strain tuning method in 2D materials and could improve their light–matter interaction in a tubular configuration, which may hold great capability in 2D materials integration for on‐chip applications such as in mechanics, electronics, and photonics.  相似文献   

7.
While high‐performance p‐type semiconducting polymers are widely reported, their n‐type counterparts are still rare in terms of quantity and quality. Here, an improved Stille polymerization protocol using chlorobenzene as the solvent and palladium(0)/copper(I) as the catalyst is developed to synthesize high‐quality n‐type polymers with number‐average molecular weight up to 105 g mol?1. Furthermore, by sp2‐nitrogen atoms (sp2‐N) substitution, three new n‐type polymers, namely, pBTTz, pPPT, and pSNT, are synthesized, and the effect of different sp2‐N substitution positions on the device performances is studied for the first time. It is found that the incorporation of sp2‐N into the acceptor units rather than the donor units results in superior crystalline microstructures and higher electron mobilities. Furthermore, an amine‐tailed self‐assembled monolayer (SAM) is smoothly formed on a Si/SiO2 substrate by a simple spin‐coating technique, which can facilitate the accumulation of electrons and lead to more perfect unipolar n‐type transistor performances. Therefore, a remarkably high unipolar electron mobility up to 5.35 cm2 V?1 s?1 with a low threshold voltage (≈1 V) and high on/off current ratio of ≈107 is demonstrated for the pSNT‐based devices, which are among the highest values for unipolar n‐type semiconducting polymers.  相似文献   

8.
This paper reports a facile and scalable process to achieve high performance red perovskite light‐emitting diodes (LEDs) by introducing inorganic Cs into multiple quantum well (MQW) perovskites. The MQW structure facilitates the formation of cubic CsPbI3 perovskites at low temperature, enabling the Cs‐based QWs to provide pure and stable red electroluminescence. The versatile synthesis of MQW perovskites provides freedom to control the crystallinity and morphology of the emission layer. It is demonstrated that the inclusion of chloride can further improve the crystallization and consequently the optical properties of the Cs‐based MQW perovskites, inducing a low turn‐on voltage of 2.0 V, a maximum external quantum efficiency of 3.7%, a luminance of ≈440 cd m?2 at 4.0 V. These results suggest that the Cs‐based MQW LED is among the best performing red perovskite LEDs. Moreover, the LED device demonstrates a record lifetime of over 5 h under a constant current density of 10 mA cm?2. This work suggests that the MQW perovskites is a promising platform for achieving high performance visible‐range electroluminescence emission through high‐throughput processing methods, which is attractive for low‐cost lighting and display applications.  相似文献   

9.
Emerging graphene quantum dots (GQDs) have received much attention for use as next‐generation light‐emitting diodes. However, in the solid‐state, π‐interaction‐induced aggregation‐caused photoluminescence (PL) quenching (ACQ) in GQDs makes it challenging to realize high‐performance devices. Herein, GQDs incorporated with boron oxynitride (GQD@BNO) are prepared from a mixture of GQDs, boric acid, and urea in water via one‐step microwave heating. Due to the effective dispersion in the BNO matrix, ACQ is significantly suppressed, resulting in high PL quantum yields (PL‐QYs) of up to 36.4%, eightfold higher than that of pristine GQD in water. The PL‐QY enhancement results from an increase in the spontaneous emission rate of GQDs due to the surrounding BNO matrix, which provides a high‐refractive‐index material and fluorescence energy transfer from the larger‐gap BNO donor to the smaller‐gap GQD acceptor. A high solid‐state PL‐QY makes the GQD@BNO an ideal active material for use in AC powder electroluminescent (ACPEL) devices, with the luminance of the first working GQD‐based ACPEL device exceeding 283 cd m?2. This successful demonstration shows promise for the use of GQDs in the field of low‐cost, ecofriendly electroluminescent devices.  相似文献   

10.
All‐solution‐processed pure formamidinium‐based perovskite light‐emitting diodes (PeLEDs) with record performance are successfully realized. It is found that the FAPbBr3 device is hole dominant. To achieve charge carrier balance, on the anode side, PEDOT:PSS 8000 is employed as the hole injection layer, replacing PEDOT:PSS 4083 to suppress the hole current. On the cathode side, the solution‐processed ZnO nanoparticle (NP) is used as the electron injection layer in regular PeLEDs to improve the electron current. With the smallest ZnO NPs (2.9 nm) as electron injection layer (EIL), the solution‐processed PeLED exhibits a highest forward viewing power efficiency of 22.3 lm W?1, a peak current efficiency of 21.3 cd A?1, and an external quantum efficiency of 4.66%. The maximum brightness reaches a record 1.09 × 105 cd m?2. A record lifetime T50 of 436 s is achieved at the initial brightness of 10 000 cd m?2. Not only do PEDOT:PSS 8000 HIL and ZnO NPs EIL modulate the injected charge carriers to reach charge balance, but also they prevent the exciton quenching at the interface between the charge injection layer and the light emission layer. The subbandgap turn‐on voltage is attributed to Auger‐assisted energy up‐conversion process.  相似文献   

11.
Developing low‐cost and high‐quality quantum dots (QDs) or nanocrystals (NCs) and their corresponding efficient light‐emitting diodes (LEDs) is crucial for the next‐generation ultra‐high‐definition flexible displays. Here, there is a report on a room‐temperature triple‐ligand surface engineering strategy to play the synergistic role of short ligands of tetraoctylammonium bromide (TOAB), didodecyldimethylammonium bromide (DDAB), and octanoic acid (OTAc) toward “ideal” perovskite QDs with a high photoluminescence quantum yield (PLQY) of >90%, unity radiative decay in its intrinsic channel, stable ink characteristics, and effective charge injection and transportation in QD films, resulting in the highly efficient QD‐based LEDs (QLEDs). Furthermore, the QD films with less nonradiative recombination centers exhibit improved PL properties with a PLQY of 61% through dopant engineering in A‐site. The robustness of such properties is demonstrated by the fabrication of green electroluminescent LEDs based on CsPbBr3 QDs with the peak external quantum efficiency (EQE) of 11.6%, and the corresponding peak internal quantum efficiency (IQE) and power efficiency are 52.2% and 44.65 lm W?1, respectively, which are the most‐efficient perovskite QLEDs with colloidal CsPbBr3 QDs as emitters up to now. These results demonstrate that the as‐obtained QD inks have a wide range application in future high‐definition QD displays and high‐quality lightings.  相似文献   

12.
All‐inorganic semiconductor perovskite quantum dots (QDs) with outstanding optoelectronic properties have already been extensively investigated and implemented in various applications. However, great challenges exist for the fabrication of nanodevices including toxicity, fast anion‐exchange reactions, and unsatisfactory stability. Here, the ultrathin, core–shell structured SiO2 coated Mn2+ doped CsPbX3 (X = Br, Cl) QDs are prepared via one facile reverse microemulsion method at room temperature. By incorporation of a multibranched capping ligand of trioctylphosphine oxide, it is found that the breakage of the CsPbMnX3 core QDs contributed from the hydrolysis of silane could be effectively blocked. The thickness of silica shell can be well‐controlled within 2 nm, which gives the CsPbMnX3@SiO2 QDs a high quantum yield of 50.5% and improves thermostability and water resistance. Moreover, the mixture of CsPbBr3 QDs with green emission and CsPbMnX3@SiO2 QDs with yellow emission presents no ion exchange effect and provides white light emission. As a result, a white light‐emitting diode (LED) is successfully prepared by the combination of a blue on‐chip LED device and the above perovskite mixture. The as‐prepared white LED displays a high luminous efficiency of 68.4 lm W?1 and a high color‐rendering index of Ra = 91, demonstrating their broad future applications in solid‐state lighting fields.  相似文献   

13.
The development of omnidirectionally stretchable pressure sensors with high performance without stretching‐induced interference has been hampered by many challenges. Herein, an omnidirectionally stretchable piezoresistive pressure‐sensing device is demonstrated by combining an omniaxially stretchable substrate with a 3D micropattern array and solution‐printing of electrode and piezoresistive materials. A unique substrate structural design and materials mean that devices that are highly sensitive are rendered, with a stable out‐of‐plane pressure response to both static (sensitivity of 0.5 kPa?1 and limit of detection of 28 Pa) and dynamic pressures and the minimized in‐plane stretching responsiveness (a small strain gauge factor of 0.17), achieved through efficient strain absorption of the electrode and sensing materials. The device can detect human‐body tremors, as well as measure the relative elastic properties of human skin. The omnidirectionally stretchable pressure sensor with a high pressure sensitivity and minimal stretch‐responsiveness yields great potential to skin‐attachable wearable electronics, human–machine interfaces, and soft robotics applications.  相似文献   

14.
Color‐saturated red light‐emitting diodes (LEDs) with emission wavelengths at around 620–640 nm are an essential part of high‐definition displays. Metal halide perovskites with very narrow emission linewidth are promising emitters, and rapid progress has been made in perovskite‐based LEDs (PeLEDs); however, the efficiency of the current color—pure red PeLEDs—still far lags behind those of other‐colored ones. Here, a simple but efficient strategy is reported to gradually down‐shift the Fermi level of perovskite nanocrystals (NCs) by controlling the interaction between NCs and their surface molecular electron acceptor—benzyl iodide with aromatic rings—and realize p‐doping in the color‐saturated 625 nm emitting NCs, which significantly reduces the hole injection barrier in devices. Besides, both the luminescence efficiency and electric conductivity of perovskite NCs are enhanced as additional advantages as the result of surface defects passivation. As a result, the external quantum efficiency for the resulting LED is increased from 4.5% to 12.9% after benzyl iodide treatment, making this device the best‐performing color‐saturated red PeLED so far. It is further found that the hole injection plays a more critical role than the photoluminescence efficiency of perovskite emitter in determining the LED performance, which implies design principles for efficient thin‐film planar LEDs.  相似文献   

15.
Transparent conductive electrodes (TCEs) featuring a smooth surface are indispensable for preserving pristine electrical characteristics in optoelectronic and transparent electronic devices. For high‐efficiency organic light emitting diodes (OLEDs), a high outcoupling efficiency, which is crucial, is only achieved by incorporating a wavelength‐scale undulating surface into a TCE layer, but this inevitably degrades device performance. Here, an optically flat, high‐conductivity TCE composed of core/shell Ag/ZnO nanochurros (NCs) is reported embedded within a resin film on a polyethylene terephthalate substrate, simultaneously serving as an efficient outcoupler and a flexible substrate. The ZnO NCs are epitaxially grown on the {100} planes of a pentagonal Ag core and the length of ZnO shells is precisely controlled by the exposure time of Xe lamp. Unlike Ag nanowires films, the Ag/ZnO NCs films markedly boost the optical tunneling of light. Green‐emitting OLEDs (2.78 × 3.5 mm2) fabricated with the Ag/ZnO TCE exhibit an 86% higher power efficiency at 1000 cd m?2 than ones with an Sn‐doped indium oxide TCE. A full‐vectorial electromagnetic simulation suggests the suppression of plasmonic absorption losses within their Ag cores. These results provide a feasibility of multifunctional TCEs with synthetically controlled core/shell nanomaterials toward the development of high‐efficiency LED and solar cell devices.  相似文献   

16.
Organic–inorganic hybrid perovskite light‐emitting diodes (PeLEDs) are promising for next‐generation optoelectronic devices due to their potential to achieve high color purity, efficiency, and brightness. Although the external quantum efficiency (EQE) of PeLEDs has recently surpassed 20%, various strategies are being pursued to increase EQE further and reduce the EQE gap compared to other LED technologies. A key point to further boost EQE of PeLEDs is linked to the high refractive index of the perovskite emissive layer, leading to optical losses of more than 70% of emitted photons. Here, it is demonstrated that a randomly distributed nanohole array with high‐index contrast can effectively enhance outcoupling efficiency in PeLEDs. Based on a comprehensive optical analysis on the perovskite thin film and outcoupling structure, it is confirmed that the nanohole array effectively distributes light into the substrate for improved outcoupling, allowing for 1.64 times higher light extraction. As a result, highly efficient red/near‐infrared PeLEDs with a peak EQE of 14.6% are demonstrated.  相似文献   

17.
Comprising an emitting layer (EML) constituting a wide‐energy‐gap host, a thermally activated delayed fluorescence (TADF) sensitizer and a conventional fluorescent dopant, TADF‐sensitizing‐fluorescence organic light‐emitting diodes (TSF‐OLEDs) highly depend on component interplay to maximize their performance, which, however, is still under‐researched. Taking the host type (TADF or non‐TADF) and the recombination position (on the host or on the TADF sensitizer) into consideration, the interplay of host and TADF sensitizer is comprehensively studied and manipulated. A wide‐energy‐gap host with TADF and recombination of charges on it are both required to maximize device performances by triggering multiple sensitizing processes to eliminate exciton losses. Based on those findings, a maximum external quantum efficiency (EQE)/power efficiency (PE) of 23.2%/76.9 lm W?1 is realized with a newly developed TADF host, significantly outperforming the reference devices. Further device optimization leads to unprecedently high EQE/PE of 24.2%/89.5 lm W?1 and a half‐lifetime of over 400 h at an initial luminance of 2000 cd m?2, with the peak PE being the highest value among the reported TSF‐OLEDs. This work reveals the importance of manipulating the component interplay in EMLs, opening a new avenue toward highly efficient TSF‐OLEDs.  相似文献   

18.
Metal‐halide perovskites have emerged as promising materials for optoelectronics applications, such as photovoltaics, light‐emitting diodes, and photodetectors due to their excellent photoconversion efficiencies. However, their instability in aqueous solutions and most organic solvents has complicated their micropatterning procedures, which are needed for dense device integration, for example, in displays or cameras. In this work, a lift‐off process based on poly(methyl methacrylate) and deep ultraviolet lithography on flexible plastic foils is presented. This technique comprises simultaneous patterning of the metal‐halide perovskite with a top electrode, which results in microscale vertical device architectures with high spatial resolution and alignment properties. Hence, thin‐film transistors (TFTs) with methyl‐ammonium lead iodide (MAPbI3) gate dielectrics are demonstrated for the first time. The giant dielectric constant of MAPbI3 (>1000) leads to excellent low‐voltage TFT switching capabilities with subthreshold swings ≈80 mV decade?1 over ≈5 orders of drain current magnitude. Furthermore, vertically stacked low‐power Au‐MAPbI3‐Au photodetectors with close‐to‐ideal linear response (R2 = 0.9997) are created. The mechanical stability down to a tensile radius of 6 mm is demonstrated for the TFTs and photodetectors, simultaneously realized on the same flexible plastic substrate. These results open the way for flexible low‐power integrated (opto‐)electronic systems based on metal‐halide perovskites.  相似文献   

19.
Stretchable and self‐healing (SH) energy storage devices are indispensable elements in energy‐autonomous electronic skin. However, the current collectors are not self‐healable nor intrinsically stretchable, they mostly rely on strain‐accommodating structures that require complex processing, are often limited in stretchability, and suffer from low device packing density and fragility. Here, an SH conductor comprising nickel flakes, eutectic gallium indium particles (EGaInPs), and carboxylated polyurethane (CPU) is presented. An energy storage device is constructed by the two SH electrodes assembled with graphene nanoplatelets sandwiching an ionic‐liquid electrolyte. An excellent electrochemical healability (94% capacity retention upon restretching at 100% after healing from bifurcation) is unveiled, stemming from the complexation modulated redox behavior of EGaIn in the presence of the ligand bis(trifluoromethanesulfonyl)imide, which enhances the reversible Faradaic reaction of Ga. Self‐healing can be achieved where the damaged regions are electrically restored by the flow of liquid metal and mechanically healing activated by the interfacial hydrogen bonding of CPU with an efficiency of 97.5% can be achieved. The SH conductor has an initial conductivity of 2479 S cm?1 that attains a high stretchability with 700% strain, it restores 100% stretchability even after breaking/healing with the electrical healing efficiency of 75%.  相似文献   

20.
A novel surface‐enhanced Raman scattering (SERS) sensor is developed for real‐time and highly repeatable detection of trace chemical and biological indicators. The sensor consists of a polydimethylsiloxane (PDMS) microchannel cap and a nanopillar forest‐based open SERS‐active substrate. The nanopillar forests are fabricated based on a new oxygen‐plasma‐stripping‐of‐photoresist technique. The enhancement factor (EF) of the SERS‐active substrate reaches 6.06 × 106, and the EF of the SERS sensor is about 4 times lower due to the influence of the PDMS cap. However, the sensor shows much higher measurement repeatability than the open substrate, and it reduces the sample preparation time from several hours to a few minutes, which makes the device more reliable and facile for trace chemical and biological analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号