首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioenergy is expected to play an important role in the future energy mix as it can substitute fossil fuels and contribute to climate change mitigation. However, large‐scale bioenergy cultivation may put substantial pressure on land and water resources. While irrigated bioenergy production can reduce the pressure on land due to higher yields, associated irrigation water requirements may lead to degradation of freshwater ecosystems and to conflicts with other potential users. In this article, we investigate the trade‐offs between land and water requirements of large‐scale bioenergy production. To this end, we adopt an exogenous demand trajectory for bioenergy from dedicated energy crops, targeted at limiting greenhouse gas emissions in the energy sector to 1100 Gt carbon dioxide equivalent until 2095. We then use the spatially explicit global land‐ and water‐use allocation model MAgPIE to project the implications of this bioenergy target for global land and water resources. We find that producing 300 EJ yr?1 of bioenergy in 2095 from dedicated bioenergy crops is likely to double agricultural water withdrawals if no explicit water protection policies are implemented. Since current human water withdrawals are dominated by agriculture and already lead to ecosystem degradation and biodiversity loss, such a doubling will pose a severe threat to freshwater ecosystems. If irrigated bioenergy production is prohibited to prevent negative impacts of bioenergy cultivation on water resources, bioenergy land requirements for meeting a 300 EJ yr?1 bioenergy target increase substantially (+ 41%) – mainly at the expense of pasture areas and tropical forests. Thus, avoiding negative environmental impacts of large‐scale bioenergy production will require policies that balance associated water and land requirements.  相似文献   

2.
Likely changes in precipitation (P) and potential evapotranspiration (PET) resulting from policy-driven expansion of bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using the same atmospheric forcing data over the period 1979–2004 using the Weather Research Forecast (WRF) model coupled to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider the impacts of feedstock production on water scarcity.  相似文献   

3.
Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose‐grown agricultural bioenergy crops, short‐rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state‐and‐transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business‐as‐usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub‐associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose‐grown feedstocks. The conversion of agricultural lands on marginal soils to purpose‐grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape‐scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade‐offs among wildlife species, and the choice of focal species is likely to affect the results of landscape‐scale assessments. We offer general principals to consider when crafting lists of focal species for bioenergy impact assessments at the landscape scale.  相似文献   

4.
Climate change is predicted to increase climate variability and frequency of extreme events such as drought, straining water resources in agricultural systems. Thus, limited irrigation strategies and soil amendments are being explored to conserve water in crop production. Biochar is the recalcitrant, carbon‐based coproduct of biomass pyrolysis during bioenergy production. When used as a soil amendment, biochar can increase soil water retention while enhancing soil properties and stimulating food webs. We investigated the effects of coupled biochar amendment and limited irrigation on belowground food web structure and function in an irrigated maize agroecosystem. We hypothesized that soil biota biomass and activity would decrease with limited irrigation and increase with biochar amendment and that biochar amendment would mitigate the impact of limited irrigation on the soil food web. One year after biochar addition, we extracted, identified, and estimated the biomass of taxonomic groups of soil biota (e.g., bacteria, fungi, protozoa, nematodes, and arthropods) from wood‐derived biochar‐amended (30 Mg ha?1) and nonamended soils under maize with limited (two‐thirds of full) and full irrigation. We modeled structural and functional properties of the soil food web. Neither biochar amendment nor limited irrigation had a significant effect on biomass of the soil biota groups. Modeled soil respiration and nitrogen mineralization fluxes were not different between treatments. A comparison of the structure and function of the agroecosystem soil food web and a nearby native grassland revealed that in this temperate system, the negative impact of long‐term conventional agricultural management outweighed the impact of limited irrigation. One year of biochar amendment did not mitigate nor further contribute to the negative effects of historical agricultural management.  相似文献   

5.
This paper quantifies and analyses the water footprint of Tunisia at national and sub-national level, assessing green, blue and grey water footprints for the period 1996–2005. It also assesses economic water and land productivities related to crop production for irrigated and rain-fed agriculture, and water scarcity. The water footprint of crop production gave the largest contribution (87%) to the total national water footprint. At national level, tomatoes and potatoes were the main crops with relatively high economic water productivity, while olives and barley were the main crops with relatively low productivity. In terms of economic land productivity, oranges had the highest productivity and barley the lowest. South Tunisia had the lowest economic water and land productivities. Economic land productivity was found to explain more of the current production patterns than economic water productivity, which may imply opportunities for water saving. The total blue water footprint of crop production represented 31% of the total renewable blue water resources, which means that Tunisia as a whole experienced significant water scarcity. The blue water footprint on groundwater represented 62% of the total renewable groundwater resources, which means that the country faced severe water scarcity related to groundwater.  相似文献   

6.
The Southern High Plains (SHP) of Texas, where cotton (Gossypium hirsutum L.) is grown in vast acreage, and the Texas Rolling Plains (TRP), which is dominated by an invasive brush, honey mesquite (Prosopis glandulosa) have the potential for biofuel production for meeting the U.S. bioenergy target of 2022. However, a shift in land use from cotton to perennial grasses and a change in land management such as the harvesting of mesquite for biofuel production can significantly affect regional hydrology and water quality. In this study, APEX and SWAT models were integrated to assess the impacts of replacing cotton with Alamo switchgrass (Panicum virgatum L.) and Miscanthus × giganteus in the upstream subwatershed and harvesting mesquite in the downstream subwatershed on water and nitrogen balances in the Double Mountain Fork Brazos watershed in the SHP and TRP regions. Simulated average (1994–2009) annual surface runoff from the baseline cotton areas decreased significantly (< 0.05) by 88%, and percolation increased by 28% under the perennial grasses scenario compared to the baseline cotton scenario. The soil water content enhanced significantly under the irrigated switchgrass scenario compared to the baseline irrigated cotton scenario from January to April and August to October. However, the soil water content was depleted significantly under the dryland Miscanthus scenario from April to July relative to the baseline dryland cotton scenario. The nitrate‐nitrogen (NO3‐N) and organic‐N loads in surface runoff and NO3‐N leaching to groundwater reduced significantly by 86%, 98%, and 100%, respectively, under the perennial grasses scenario. Similarly, surface runoff, and NO3‐N and organic‐N loads through surface runoff reduced significantly by 98.9%, 99.9%, and 99.5%, respectively, under the post‐mesquite‐harvest scenario. Perennial grasses exhibited superior ethanol production potential compared to mesquite. However, mesquite is an appropriate supplementary bioenergy source in the TRP region because of its standing biomass and rapid regrowth characteristics.  相似文献   

7.
Integrated assessment model scenarios project rising deployment of biomass‐using energy systems in climate change mitigation scenarios. But there is concern that bioenergy deployment will increase competition for land and water resources and obstruct objectives such as nature protection, the preservation of carbon‐rich ecosystems, and food security. To study the relative importance of water and land availability as biophysical constraints to bioenergy deployment at a global scale, we use a process‐detailed, spatially explicit biosphere model to simulate rain‐fed and irrigated biomass plantation supply along with the corresponding water consumption for different scenarios concerning availability of land and water resources. We find that global plantation supplies are mainly limited by land availability and only secondarily by freshwater availability. As a theoretical upper limit, if all suitable lands on Earth, besides land currently used in agriculture, were available for bioenergy plantations (“Food first” scenario), total plantation supply would be in the range 2,010–2,300 EJ/year depending on water availability and use. Excluding all currently protected areas reduces the supply by 60%. Excluding also areas where conversion to biomass plantations causes carbon emissions that might be considered unacceptably high will reduce the total plantation supply further. For example, excluding all areas where soil and vegetation carbon stocks exceed 150 tC/ha (“Carbon threshold savanna” scenario) reduces the supply to 170–290 EJ/year. With decreasing land availability, the amount of water available for irrigation becomes vitally important. In the least restrictive land availability scenario (“Food first”), up to 77% of global plantation biomass supply is obtained without additional irrigation. This share is reduced to 31% for the most restrictive “Carbon threshold savanna” scenario. The results highlight the critical—and geographically varying—importance of co‐managing land and water resources if substantial contributions of bioenergy are to be reached in mitigation portfolios.  相似文献   

8.
In this study the seasonal variation in carbon, water and energy fluxes as well as in net primary productivity (NPP) of different tree components is presented for a 2‐year‐old poplar (Populus spp.) plantation. A thorough ecophysiological study was performed at ecosystem scale, at tree and at leaf level, in this high‐density bioenergy plantation. Seasonal variation in NPP and fluxes was analysed in relation to meteorological parameters at the field site. The growing season length in terms of carbon uptake was controlled by leaf area development until the maximum leaf area index (LAImax) was reached. Afterwards, a shift to belowground carbon allocation was observed. A dry period in spring caused a reduced leaf area production as well as a decrease in net ecosystem exchange and gross primary production (GPP) due to stomatal closure. Water use efficiency and fine root growth increased in response to limiting soil water availability in the root zone. When soil water availability was not limiting, GPP was controlled by a decrease in solar radiation and air temperature. The results of this study indicate that the productivity of recently established bioenergy plantations with fast‐growing trees is very sensitive to drought. The interaction between soil water availability and factors controlling ecosystem GPP is crucial in assessing the CO2 mitigation potential under future climate conditions.  相似文献   

9.
Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change‐induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change‐induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water‐limited ecosystems.  相似文献   

10.
Miscanthus × giganteus and Panicum virgatum are potential promising bioenergy feedstock crops suitable for the temperate zone. The energy efficiency and sustainability of bioenergy production could be improved by reducing their fertilizer inputs – particularly energy intensive nitrogen fertilizers. Miscanthus is known to benefit from nitrogen fixation by associative diazotrophs. However, because the effects of edaphic‐, management‐, and plant‐related factors on feedstock‐associated diazotroph communities have not yet been characterized, it is not currently possible to optimize the nitrogen contribution to feedstock crops from associated diazotroph communities. To address this critical knowledge gap, we characterized the bacterial and diazotroph communities in the rhizosphere and endophytic compartments of both species at eight research sites across Illinois. We also quantified the nifH gene abundance in the rhizosphere soil as well as a range of soil chemistry parameters at these sites. Multivariate statistical analyses revealed that diazotroph and bacterial communities in the rhizosphere varied primarily among sites, with very small differences between host species. Conversely, diazotroph and bacterial communities in the endophytic compartments differed significantly between plant species, but did not vary substantially among sites. Finally, nifH gene abundance in the rhizospheres of both species varied substantially from site to site and was positively correlated with soil iron concentration as well as soil ammonium concentration, and negatively correlated with abundance of other soil nutrients including calcium, total nitrogen, and nitrates. These results indicate the potential edaphic drivers of associative diazotroph communities in feedstock rhizospheres and suggest that manipulating bioavailable iron content in the soil is a potential direction for investigating the optimization of these communities to improve their nitrogen contribution to crops.  相似文献   

11.
The recent increase in corn ethanol production has drawn attention to the environmental sustainability of biofuel production. Environmental assessments of second‐generation biofuel crops (SGBC) have focused primarily on greenhouse gas emissions and water quality. However, expanding the production of cellulosic biomass resources, especially those that require dedicated agricultural land, is also likely to have impacts on biodiversity. We developed an optimization framework for projecting the spatial pattern of SGBC expansion in the United States and intersected these predictions with occurrence data for at‐risk species. In particular, we focused on two candidate perennial grass feedstocks, Panicum virgatum (switchgrass), and Miscanthus × giganteus (Miscanthus). Tradeoffs between biodiversity and economic profitability are assessed using county level data sets of SGBC yield, agricultural land availability, land rents, and at‐risk species occurrences. Results show that future SGBC expansion is likely to occur outside of the Corn Belt, where conventional biofuel feedstocks are currently grown. The set of at‐risk species that could potentially be impacted is therefore likely to be different from the at‐risk species prevalent in the agroecological landscapes of the Upper Midwest that are dominated by corn and soy production. The total number and type of potentially impacted taxa is influenced by several factors, including the total demand for cellulosic biomass, the type of agricultural land used for production, and the method for defining at‐risk species. SGBC production is also concentrated in fewer counties when a national species conservation constraint is combined with a biofuel production mandate. This analysis provides a foundation for future research on species conservation in bioenergy production landscapes and highlights the importance of incorporating biodiversity into broader environmental assessments of biofuel sustainability.  相似文献   

12.
This study addresses the uncertainties related to potential changes in land use and management and associated impacts on hydrology and water quality resulting from increased production of biofuel from the conventional and cellulosic feedstock. The Soil Water Assessment Tool (SWAT) was used to assess the impacts on regional and field scale evapotranspiration, soil moisture content, stream flow, sediment, and nutrient loadings in the Ohio River Basin. The model incorporates spatially and temporally detailed hydrologic, climate and agricultural practice data that are pertinent to simulate biofuel feedstock production, watershed hydrology and water quality. Three future biofuel production scenarios in the region were considered, including a feedstock projection from the DOE Billion‐Ton (BT2) Study, a change in corn rotations to continuous corn, and harvest of 50% corn stover. The impacts were evaluated on the basis of relative changes in hydrology and water quality from historical baseline and future business‐as‐usual conditions of the basin. The overall impact on water quality is an order of magnitude higher than the impact on hydrology. For all the three future scenarios, the sub‐basin results indicated an overall increase in annual evapotranspiration of up to 6%, a decrease in runoff up to 10% and minimal change in soil moisture. The sediment and phosphorous loading at both regional and field levels increased considerably (up to 40–90%) for all the biofuel feedstock scenario considered, while the nitrogen loading increased up to 45% in some regions under the BT2 Study scenario, decreased up to 10% when corn are grown continuously instead of in rotations, and changed minimally when 50% of the stover are harvested. Field level analyses revealed significant variability in hydrology and water quality impacts that can further be used to identify suitable locations for the feedstock productions without causing major impacts on water quantity and quality.  相似文献   

13.
In the United States, renewable energy mandates calling for increased production of cellulosic biofuels will require a diversity of bioenergy feedstocks to meet growing demands. Within the suite of potential energy crops, plants within the genus Agave promise to be a productive feedstock in hot and arid regions. The potential distributions of Agave tequilana and Agave deserti in the United States were evaluated based on plant growth parameters identified in an extensive literature review. A geospatial suitability model rooted in fuzzy logic was developed that utilized a suite of biophysical criteria to optimize ideal geographic locations for this new crop, and several suitability scenarios were tested for each species. The results of this spatially explicit suitability model suggest that there is potential for Agave to be grown as an energy feedstock in the southwestern region of the United States – particularly in Arizona, California, and Texas and a significant portion of these areas are proximate to existing transportation infrastructure. Both Agave species showed the highest state‐level renewable energy benefit in Arizona, where agave plants have the potential to contribute 4.8–9.6% of the states' ethanol consumption, and 2.5–4.9% of its electricity consumption, for A. deserti and A. tequilana, respectively. This analysis supports the feasibility of Agave as a complementary bioenergy feedstock that can be grown in areas too harsh for conventional energy feedstocks.  相似文献   

14.
We estimate the global bioenergy potential from dedicated biomass plantations in the 21st century under a range of sustainability requirements to safeguard food production, biodiversity and terrestrial carbon storage. We use a process‐based model of the land biosphere to simulate rainfed and irrigated biomass yields driven by data from different climate models and combine these simulations with a scenario‐based assessment of future land availability for energy crops. The resulting spatial patterns of large‐scale lignocellulosic energy crop cultivation are then investigated with regard to their impacts on land and water resources. Calculated bioenergy potentials are in the lower range of previous assessments but the combination of all biomass sources may still provide between 130 and 270 EJ yr?1 in 2050, equivalent to 15–25% of the World's future energy demand. Energy crops account for 20–60% of the total potential depending on land availability and share of irrigated area. However, a full exploitation of these potentials will further increase the pressure on natural ecosystems with a doubling of current land use change and irrigation water demand. Despite the consideration of sustainability constraints on future agricultural expansion the large‐scale cultivation of energy crops is a threat to many areas that have already been fragmented and degraded, are rich in biodiversity and provide habitat for many endangered and endemic species.  相似文献   

15.
As an herbaceous perennial, Miscanthus has attracted extensive attention in bioenergy refinery and ecological remediation due to its high yield and superior environmental adaptability. This review summarizes current research advances of Miscanthus in several aspects including biological properties, biofuels production, and phytoremediation of contaminated soil. Miscanthus has relatively high biomass yield, calorific value, and cellulose content compared with other lignocellulosic bioenergy crops, which make it one of the most promising feedstocks for the production of second‐generation biofuels. Moreover, Miscanthus can endure soil pollutions caused by various heavy metals and survive in a variety of adverse environmental conditions. Therefore, it also has potential applications in ecological remediation of contaminated soil, and reclamation of polluted soil and water resources. Nevertheless, more endeavors are still needed in the genetic improvement and elite cultivar breeding, large‐scale cultivation on marginal land, and efficient conversion to biofuels, when utilizing Miscanthus as a bioenergy crop. Furthermore, more efforts should also be undertaken to translate Miscanthus into a bioenergy crop with the phytoremediation potential.  相似文献   

16.
There has been rapid economic development in China in recent decades, and demand for energy has consequently been increasing rapidly. Development and utilisation of clean and renewable energy has been promoted by the Chinese government to help sustain long-term and stable development. Sugarcane is being increasingly used in several countries as feedstock for renewable energy products, and is a major and expanding crop in southern China. In this paper, we discuss the potential of sugarcane as a feedstock for bioenergy production in China. It includes a review of (1) the existing sugarcane industry in China and key bio-physical factors affecting the extent to which sugarcane-based industries could supply feedstock for renewable energy production in China, (2) the economic and policy factors which are likely to affect production of bioenergy from sugarcane in China, and (3) recommendations on actions and policies that may assist with appropriate development of bioenergy production from sugarcane in China. Existing and expected future economic conditions are unlikely to favour production of biofuel from the sugar component in cane. However, the fibre component of cane remains an under-utilised resource component. A conclusion is made that sugarcane fibre has potential to contribute towards renewable electricity production in China. However, at present, favourable incentives do not exist to encourage this production. It is suggested that policies to facilitate cost-effective production of renewable electricity by sugar mills, consistent with national objectives regarding production of renewable energy, be considered by governments. Priorities for future research are in improving biomass yields per unit area of land and technologies for low-cost conversion of lignocellulosic biomass into biofuel.  相似文献   

17.
This study models and quantifies spatially referenced probability distributions of corn residue cost and assesses their influence on comparative advantages of different areas of the Corn Belt to attract biofuel plants. Results suggest that irrigated areas of the Corn Belt, despite their relatively low planting density, may result more attractive than some of their rainfed counterparts in the eastern Corn Belt due to low risk in feedstock cost resulting from stability of yields. Therefore, agricultural districts in the Great Plains of the US may not need to pay high subsidies to compete with those in the eastern Corn Belt to attract biofuel firms. Policy restrictions on irrigation due to concerns over groundwater depletion may, however, diminish the relative comparative advantage of the irrigated Corn Belt for biofuel production.  相似文献   

18.
Land‐use conversion into bioenergy crop production can alter litter decomposition processes tightly coupled to soil carbon and nutrient dynamics. Yet, litter decomposition has been poorly described in bioenergy production systems, especially following land‐use conversion. Predicting decomposition dynamics in postconversion bioenergy production systems is challenging because of the combined influence of land‐use legacies with current management and litter quality. To evaluate how land‐use legacies interact with current bioenergy crop management to influence litter decomposition in different litter types, we conducted a landscape‐scale litterbag decomposition experiment. We proposed land‐use legacies regulate decomposition, but their effects are weakened under higher quality litter and when current land use intensifies ecosystem disturbance relative to prior land use. We compared sites left in historical land uses of either agriculture (AG) or Conservation Reserve Program grassland (CRP) to those that were converted to corn or switchgrass bioenergy crop production. Enzyme activities, mass loss, microbial biomass, and changes in litter chemistry were monitored in corn stover and switchgrass litter over 485 days, accompanied by similar soil measurements. Across all measured variables, legacy had the strongest effect (P < 0.05) relative to litter type and current management, where CRP sites maintained higher soil and litter enzyme activities and microbial biomass relative to AG sites. Decomposition responses to conversion depended on legacy but also current management and litter type. Within the CRP sites, conversion into corn increased litter enzymes, microbial biomass, and litter protein and lipid abundances, especially on decomposing corn litter, relative to nonconverted CRP. However, conversion into switchgrass from CRP, a moderate disturbance, often had no effect on switchgrass litter decomposition parameters. Thus, legacies shape the direction and magnitude of decomposition responses to bioenergy crop conversion and therefore should be considered a key influence on litter and soil C cycling under bioenergy crop management.  相似文献   

19.
A selection of multi‐stemmed, drought‐tolerant mallee eucalypts, planted in belt form and integrated with crops in dryland agricultural areas of Australia, may be able to produce biomass as a commercially attractive feedstock for biofuel production. This study aimed to determine if small (40–50 cm high) bunds along mallee belts could trap otherwise underutilized surface water runoff within paddocks, thereby increasing water available to the mallee trees and their growth rates. An experiment was established in 5 year‐old Eucalyptus polybractea (RT Baker) mallee belts near the town of Narrogin in the central wheatbelt area of Western Australia. Bunds led to significant (12%) increases in biomass accumulation after about 2 years and 35% increases at around 3 years. Bunds also led to significant increases in predawn leaf water potential and significant decreases in soil water deficit within 12 months, which persisted for the remainder of the 39 month trial. We suggest that the increase in biomass accumulation was largely due to increased water availability, but that increased nutrient supply from run‐on and trapping of organic residues may have also had some effect on bunded plots, despite our attempts to mitigate this effect by experimentally adding nutrients to all treatments. Results show that installing bunds along mallee belts would be a cost‐effective investment at sites where within‐paddock runoff is likely (i.e. gently sloping and with a loamy sand or heavier soil texture). Installation costs should be offset by improved biomass production within a few years and ongoing improvements in growth over the long term.  相似文献   

20.
We present an approach for providing quantitative insight into the production‐ecological sustainability of biofuel feedstock production systems. The approach is based on a simple crop‐soil model and was used for assessing feedstock from current and improved production systems of cassava for bioethanol. Assessments were performed for a study area in Mozambique, a country considered promising for biomass production. Our focus is on the potential role of smallholders in the production of feedstock for biofuels. We take cassava as the crop for this purpose and compare it with feedstock production on plantations using sugarcane, sweet sorghum and cassava as benchmarks. Production‐ecological sustainability was defined by seven indicators related to resource‐use efficiency, soil quality, net energy production and greenhouse gas (GHG) emissions. Results indicate that of the assessed systems, sugarcane performed better than cassava, although it requires substantial water for irrigation. Targeted use of nutrient inputs improved sustainability of smallholder cassava. Cassava production systems on more fertile soils were more sustainable than those on less fertile soils; the latter required more external inputs for achieving the same output, affecting most indicators negatively and reducing the feasibility for smallholders. Cassava and sweet sorghum performed similarly. Cassava production requires much more labour per hectare than production of sugarcane or sweet sorghum. Production of bioethanol feedstock on cultivated lands was more sustainable and had potential for carbon sequestration, avoiding GHG emissions from clearing natural vegetation if new land is opened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号