首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2D layered materials with sensitive surfaces are promising materials for use in chemical sensing devices, owing to their extremely large surface‐to‐volume ratios. However, most chemical sensors based on 2D materials are used in the form of laterally defined active channels, in which the active area is limited to the actual device dimensions. Therefore, a novel approach for fabricating self‐formed active‐channel devices is proposed based on 2D semiconductor materials with very large surface areas, and their potential gas sensing ability is examined. First, the vertical growth phenomenon of SnS2 nanocrystals is investigated with large surface area via metal‐assisted growth using prepatterned metal electrodes, and then self‐formed active‐channel devices are suggested without additional pattering through the selective synthesis of SnS2 nanosheets on prepatterned metal electrodes. The self‐formed active‐channel device exhibits extremely high response values (>2000% at 10 ppm) for NO2 along with excellent NO2 selectivity. Moreover, the NO2 gas response of the gas sensing device with vertically self‐formed SnS2 nanosheets is more than two orders of magnitude higher than that of a similar exfoliated SnS2‐based device. These results indicate that the facile device fabrication method would be applicable to various systems in which surface area plays an important role.  相似文献   

2.
The concept of realizing electronic applications on elastically stretchable “skins” that conform to irregularly shaped surfaces is revolutionizing fundamental research into mechanics and materials that can enable high performance stretchable devices. The ability to operate electronic devices under various mechanically stressed states can provide a set of unique functionalities that are beyond the capabilities of conventional rigid electronics. Here, a distinctive microtectonic effect enabled oxygen‐deficient, nanopatterned zinc oxide (ZnO) thin films on an elastomeric substrate are introduced to realize large area, stretchable, transparent, and ultraportable sensors. The unique surface structures are exploited to create stretchable gas and ultraviolet light sensors, where the functional oxide itself is stretchable, both of which outperform their rigid counterparts under room temperature conditions. Nanoscale ZnO features are embedded in an elastomeric matrix function as tunable diffraction gratings, capable of sensing displacements with nanometre accuracy. These devices and the microtectonic oxide thin film approach show promise in enabling functional, transparent, and wearable electronics.  相似文献   

3.
The humidity dependence of the gas sensing characteristics of metal oxide semiconductors has been one of the greatest obstacles for gas sensor applications during the last five decades because ambient humidity dynamically changes with the environmental conditions. Herein, a new and novel strategy is reported to eliminate the humidity dependence of the gas sensing characteristics of oxide chemiresistors via dynamic self‐refreshing of the sensing surface affected by water vapor chemisorption. The sensor resistance and gas response of pure In2O3 hollow spheres significantly change and deteriorate in humid atmospheres. In contrast, the humidity dependence becomes negligible when an optimal concentration of CeO2 nanoclusters is uniformly loaded onto In2O3 hollow spheres via layer‐by‐layer (LBL) assembly. Moreover, In2O3 sensors LBL‐coated with CeO2 nanoclusters show fast response/recovery, low detection limit (500 ppb), and high selectivity to acetone even in highly humid conditions (relative humidity 80%). The mechanism underlying the dynamic refreshing of the In2O3 sensing surfaces regardless of humidity variation is investigated in relation to the role of CeO2 and the chemical interaction among CeO2, In2O3, and water vapor. This strategy can be widely used to design high performance gas sensors including disease diagnosis via breath analysis and pollutant monitoring.  相似文献   

4.
Organic semiconductor gas sensor is one of the promising candidates of room temperature operated gas sensors with high selectivity. However, for a long time the performance of organic semiconductor sensors, especially for the detection of oxidizing gases, is far behind that of the traditional metal oxide gas sensors. Although intensive attempts have been made to address the problem, the performance and the understanding of the sensing mechanism are still far from sufficient. Herein, an ultrasensitive organic semiconductor NO2 sensor based on 6,13‐bis(triisopropylsilylethynyl)­pentacene (TIPS‐petacene) is reported. The device achieves a sensitivity over 1000%/ppm and fast response/recovery, together with a low limit of detection (LOD) of 20 ppb, all of which reach the level of metal oxide sensors. After a comprehensive analysis on the morphology and electrical properties of the organic films, it is revealed that the ultrahigh performance is largely related to the film charge transport ability, which was less concerned in the studies previously. And the combination of efficient charge transport and low original charge carrier concentration is demonstrated to be an effective access to obtain high performance organic semiconductor gas sensors.  相似文献   

5.
Increasing active sites is an effective method to enhance the catalytic activity of catalysts. Amorphous materials have attracted considerable attention in catalysis because of their abundant catalytic active sites. Herein, a series of derivatives is prepared via the low‐temperature heat treatment of ZIF‐67 hollow sphere at different temperatures. An intermediate product with an amorphous structure is formed during transformation from ZIF‐67 to Co3O4 nanocrystallines when ZIF‐67 hollow sphere is heat treated at 260 °C for 3 h. The chemical composition of the amorphous derivative is similar to that of ZIF‐67, and the carbon and nitrogen contents of the amorphous derivative are obviously higher than those of crystalline samples obtained at 270 °C or higher. As electrocatalysts for the oxygen evolution reaction (OER) and nonenzymatic glucose sensing, the amorphous derivative exhibits significantly better catalytic activity than crystalline Co3O4 samples. The amorphous sample as an OER catalyst has a low overpotential of 352 mV at 10 mA cm?2. The amorphous sample as an enzyme‐free glucose sensing catalyst can provide a low detection limit of 3.9 × 10?6 m and a high sensitivity of 1074.22 µA mM?1 cm?2.  相似文献   

6.
A new technique is reported for the transformation of smooth nonpolar ZnO nanowire surfaces to zigzagged high‐index polar surfaces using polycrystalline ZnO thin films deposited by atomic layer deposition (ALD). The c‐axis‐oriented ZnO nanowires with smooth nonpolar surfaces are fabricated using vapor deposition method and subsequently coated by ALD with a ZnO particulate thin film. The synthesized ZnO–ZnO core–shell nanostructures are annealed at 800 °C to transform the smooth ZnO nanowires to zigzagged nanowires with high‐index polar surfaces. Ozone sensing response is compared for all three types of fabricated nanowire morphologies, namely nanowires with smooth surfaces, ZnO–ZnO core–shell nanowires, and zigzagged ZnO nanowires to determine the role of crystallographic surface planes on gas response. While the smooth and core–shell nanowires are largely non‐responsive to varying O3 concentrations in the experiments, zigzagged nanowires show a significantly higher sensitivity (ppb level) owing to inherent defect‐rich high‐index polar surfaces.  相似文献   

7.
The development of high performance gas sensors that operate at room temperature has attracted considerable attention. Unfortunately, the conventional mechanism of chemiresistive sensors is restricted at room temperature by insufficient reaction energy with target molecules. Herein, novel strategy for room temperature gas sensors is reported using an ionic‐activated sensing mechanism. The investigation reveals that a hydroxide layer is developed by the applied voltages on the SnO2 surface in the presence of humidity, leading to increased electrical conductivity. Surprisingly, the experimental results indicate ideal sensing behavior at room temperature for NO2 detection with sub‐parts‐per‐trillion (132.3 ppt) detection and fast recovery (25.7 s) to 5 ppm NO2 under humid conditions. The ionic‐activated sensing mechanism is proposed as a cascade process involving the formation of ionic conduction, reaction with a target gas, and demonstrates the novelty of the approach. It is believed that the results presented will open new pathways as a promising method for room temperature gas sensors.  相似文献   

8.
Nitrogen dioxide (NO2) emission has severe impact on human health and the ecological environment and effective monitoring of NO2 requires the detection limit (limit of detection) of several parts‐per‐billion (ppb). All organic semiconductor‐based NO2 sensors fail to reach such a level. In this work, using an ion‐in‐conjugation inspired‐polymer (poly(3,3′‐diaminobenzidine‐squarine, noted as PDBS) as the sensory material, NO2 can be detected as low as 1 ppb, which is the lowest among all reported organic NO2 sensors. In addition, the sensor has high sensitivity, good reversibility, and long‐time stability with a period longer than 120 d. Theoretical calculations reveal that PDBS offers unreacted amine and zwitterionic groups, which can offer both the H‐bonding and ion‐dipole interaction to NO2. The moderate binding energies (≈0.6 eV) offer high sensitivity, selectivity as well as good reversibility. The results demonstrate that the ion‐in‐conjugation can be employed to greatly improve sensitivity and selectivity in organic gas sensors by inducing both H‐bonding and ion‐dipole attraction.  相似文献   

9.
During the last decade, the synthesis and application of metal–organic framework (MOF) nanosheets has received growing interest, showing unique performances for different technological applications. Despite the potential of this type of nanolamellar materials, the synthetic routes developed so far are restricted to MOFs possessing layered structures, limiting further development in this field. Here, a bottom‐up surfactant‐assisted synthetic approach is presented for the fabrication of nanosheets of various nonlayered MOFs, broadening the scope of MOF nanosheets application. Surfactant‐assisted preorganization of the metallic precursor prior to MOF synthesis enables the manufacture of nonlayered Al‐containing MOF lamellae. These MOF nanosheets are shown to exhibit a superior performance over other crystal morphologies for both chemical sensing and gas separation. As revealed by electron microscopy and diffraction, this superior performance arises from the shorter diffusion pathway in the MOF nanosheets, whose 1D channels are oriented along the shortest particle dimension.  相似文献   

10.
Porous and single crystalline ZnO nanosheets, which were synthesized by annealing hydrozincite Zn(5)(CO(3))(2)(OH)(6) nanoplates produced with a water/ethylene glycol solvothermal method, are used as building blocks to construct functional Pd-ZnO nanoarchitectures together with Pd nanoparticles based on a self-assembly approach. Chemical sensing performances of the ZnO nanosheets were investigated carefully before and after their surface modification with Pd nanoparticles. It was found that the chemical sensors made with porous ZnO nanosheets exhibit high selectivity and quick response for detecting acetone, because of the 2D ZnO nanocrystals exposed in (100) facets at high percentage. The performances of the acetone sensors can be further improved dramatically, after the surfaces of ZnO nanosheets are modified with Pd nanoparticles. Novel acetone sensors with enhanced response, selectivity and stability have been fabricated successfully by using nanoarchitectures consisting of ZnO nanosheets and Pd nanoparticles.  相似文献   

11.
A new type of nitrogen dioxide (NO2) gas sensor based on copper phthalocyanine (CuPc) thin film transistors (TFTs) with a simple, low‐cost UV–ozone (UVO)‐treated polymeric gate dielectric is reported here. The NO2 sensitivity of these TFTs with the dielectric surface UVO treatment is ≈400× greater for [NO2] = 30 ppm than for those without UVO treatment. Importantly, the sensitivity is ≈50× greater for [NO2] = 1 ppm with the UVO‐treated TFTs, and a limit of detection of ≈400 ppb is achieved with this sensing platform. The morphology, microstructure, and chemical composition of the gate dielectric and CuPc films are analyzed by atomic force microscopy, grazing incident X‐ray diffraction, X‐ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, revealing that the enhanced sensing performance originates from UVO‐derived hydroxylated species on the dielectric surface and not from chemical reactions between NO2 and the dielectric/semiconductor components. This work demonstrates that dielectric/semiconductor interface engineering is essential for readily manufacturable high‐performance TFT‐based gas sensors.  相似文献   

12.
Large‐area and uniform three‐dimensional (3D) β‐Ni(OH)2 and NiO nanowalls were synthesized on a variety of rigid and flexible substrates via a simple aqueous chemical deposition process. The β‐Ni(OH)2 nanowalls consist of single‐crystal Ni(OH)2 nanosheets that were vertically grown on different substrates. The height, crystallinity, and morphology of the Ni(OH)2 nanowalls can be readily modified by adjusting the reaction time and concentration of the NiCl2 solution. The synthesis mechanism of the Ni(OH)2 nanowalls was determined through heterogeneous nucleation and subsequent oriented crystal growth. 3D NiO nanowalls were obtained by thermal decomposition of the Ni(OH)2 nanowalls at 400 °C in Ar atmosphere. Highly sensitive, selective gas sensors and electrochemical sensors based on these NiO nanowalls were developed. The chemiresistive gas sensors based on the NiO nanowalls grown on ceramic substrates exhibited an excellent performance with low detection limit for formaldehyde (8 ppb) and NO2 (15 ppb). The electrochemical sensor based on the NiO nanowalls grown on an FTO glass substrate had a superior selectivity to non‐enzymatic glucose with a detection limit of 200 nm .  相似文献   

13.
Developing efficient and stable non‐noble electrocatalysts for the oxygen evolution reaction (OER) remains challenging for practical applications. While nickel–iron layered double hydroxides (NiFe‐LDH) are emerging as prominent candidates with promising OER activity, their catalytic performance is still restricted by the limited active sites, poor conductivity and durability. Herein, hierarchical nickel–iron–cobalt LDH nanosheets/carbon fibers (NiFeCo‐LDH/CF) are synthesized through solvent‐thermal treatment of ZIF‐67/CF. Extended X‐ray adsorption fine structure analyses reveal that the Co substitution can stabilize the Fe local coordination environment and facilitate the π‐symmetry bonding orbital in NiFeCo‐LDH/CF, thus modifying the electronic structures. Coupling with the structural advantages, including the largely exposed active surface sites and facilitated charge transfer pathway ensured by CF, the resultant NiFeCo‐LDH/CF exhibits excellent OER activity with an overpotential of 249 mV at 10 mA cm?1 as well as robust stability over 20 h.  相似文献   

14.
The use of ZnO nanorods (NRs) as an effective coordinator and biosensing platform to create bioluminescence resonance energy transfer (BRET) is reported. Herein, a hydrothermal approach is applied to obtain morphologically controlled ZnO NRs, which are directly bound to luciferase (Luc) and carboxy‐modified quantum dot (QD) acting as a donor–acceptor pair for BRET. BRET efficiency varies significantly with the geometry of ZnO NRs, which modulates the coordination between hexahistidine‐tagged Luc (Luc‐His6) and QD, owing to the combined effect of the total surface area consisting of (001) and (100) planes and their surface polarities. Unlike typical QD–BRET reactions with metal ions (e.g., zinc ions), a geometry‐controlled ZnO NR platform can facilitate the design of surface‐initiated BRET sensors without being supplemented by copious metal ions: the geometry‐controlled ZnO NR platform can therefore pave the way for nanostructure‐based biosensors with enhanced analytical performance.  相似文献   

15.
Nanowires are important potential candidates for the realization of the next generation of sensors. They offer many advantages such as high surface‐to‐volume ratios, Debye lengths comparable to the target molecule, minimum power consumption, and they can be relatively easily incorporated into microelectronic devices. Accordingly, there has been an intensified search for novel nanowire materials and corresponding platforms for realizing single‐molecule detection with superior sensing performance. In this work, progress made towards the use of nanowires for achieving better sensing performance is critically reviewed. In particular, various nanowires types (metallic, semiconducting, and insulating) and their employment either as a sensor material or as a template material are discussed. Major obstacles and future steps towards the ultimate nanosensors based on nanowires are addressed.  相似文献   

16.
Controlled synthesis of highly efficient, stable, and cost‐effective oxygen reaction electrocatalysts with atomically‐dispersed Me–Nx–C active sites through an effective strategy is highly desired for high‐performance energy devices. Herein, based on regenerated silk fibroin dissolved in ferric chloride and zinc chloride aqueous solution, 2D porous carbon nanosheets with atomically‐dispersed Fe–Nx–C active sites and very large specific surface area (≈2105 m2 g?1) are prepared through a simple thermal treatment process. Owing to the 2D porous structure with large surface area and atomic dispersion of Fe–Nx–C active sites, the as‐prepared silk‐derived carbon nanosheets show superior electrochemical activity toward the oxygen reduction reaction with a half‐wave potential (E1/2) of 0.853 V, remarkable stability with only 11 mV loss in E1/2 after 30 000 cycles, as well as good catalytic activity toward the oxygen evolution reaction. This work provides a practical and effective approach for the synthesis of high‐performance oxygen reaction catalysts towards advanced energy materials.  相似文献   

17.
The capacity of anode materials plays a critical role in the performance of lithium‐ion batteries. Using the nanocrystals of oxygen‐free metal‐organic framework ZIF‐67 as precursor, a one‐step calcination approach toward the controlled synthesis of CoO nanoparticle cookies with excellent anodic performances is developed in this work. The CoO nanoparticle cookies feature highly porous structure composed of small CoO nanoparticles (≈12 nm in diameter) and nitrogen‐rich graphitic carbon matrix (≈18 at% in nitrogen content). Benefiting from such unique structure, the CoO nanoparticle cookies are capable of delivering superior specific capacity and cycling stability (1383 mA h g?1 after 200 runs at 100 mA g?1) over those of CoO and graphite.  相似文献   

18.
Nanostructured materials characterized by high surface–volume ratio hold the promise to constitute the active materials for next‐generation sensors. Solution‐processed hybrid organohalide perovskites, which have been extensively used in the last few years for optoelectronic applications, are characterized by a self‐assembled nanostructured morphology, which makes them an ideal candidate for gas sensing. Hitherto, detailed studies of the dependence of their electrical characteristics on the environmental atmosphere have not been performed, and even the effect of a ubiquitous gas such as O2 has been widely overlooked. Here, the electrical response of organohalide perovskites to oxygen is studied. Surprisingly, a colossal increase (3000‐fold) in the resistance of perovskite‐based lateral devices is found when measured in a full oxygen atmosphere, which is ascribed to a trap healing mechanism originating from an O2‐mediated iodine vacancies filling. A variation as small as 70 ppm in the oxygen concentration can be detected. The effect is fast (<400 ms) and fully reversible, making organohalide perovskites ideal active materials for oxygen sensing. The effect of oxygen on the electrical characteristics of organohalide perovskites must be taken into deep consideration for the design and optimization of any other perovskite‐based (opto‐) electronic device working in ambient conditions.  相似文献   

19.

In this paper, a hydrothermal method was applied to synthesize the nanosheet-like pure ZnO and 0.5%, 1 and 3% Co-doped ZnO (Co-ZnO). The pristine and Co-doped ZnO flower-like particles were assembled by porous nanosheets, with the uniform diameter about 18 μm. The N2-BET test found that Co doping significantly increased the specific surface area of the material which was conducive to gas diffusion and adsorption. HRTEM presented that 1% Co-ZnO nanosheets were composed of coral-like nanoparticles. The lattice distances 0.259 nm and 0.276 nm correspond to (002) and (100) crystal plane of ZnO. The gas sensing properties reveal that the 1% Co-doped ZnO present an outstanding enhanced sensitive performance comparing with pure ZnO to ethanol. To 100 ppm target gas, the response increased from 103 to 279.8 and the optimal operating temperature decreased from 369 to 348 °C, and the recovery time decreased from 40 to 18 s. The increased surface carrier concentration which promoted oxygen adsorption by Co was considered to be the key factor to improve the performance.

  相似文献   

20.
Rational design of complex metal–organic framework (MOF) hybrid precursors offers a great opportunity to construct various functional nanostructures. Here, a novel MOF‐hybrid‐assisted strategy to synthesize Co3O4/Co‐Fe oxide double‐shelled nanoboxes is reported. In the first step, zeolitic imidazolate framework‐67 (ZIF‐67, a Co‐based MOF)/Co‐Fe Prussian blue analogue (PBA) yolk–shell nanocubes are formed via a facile anion‐exchange reaction between ZIF‐67 nanocube precursors and [Fe(CN)6]3? ions at room temperature. Subsequently, an annealing treatment is applied to prepare Co3O4/Co‐Fe oxide double‐shelled nanoboxes. Owing to the structural and compositional benefits, the as‐derived Co3O4/Co‐Fe oxide double‐shelled nanoboxes exhibit enhanced electrocatalytic performance for oxygen evolution reaction in alkaline solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号