首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report results from a detailed study of seismicity in central Kamchatka for the period from 1960 to 1997 using a modified traditional approach. The basic elements of this approach include (a) segmentation of the seismic region concerned (the Kronotskii and Shipunskii geoblocks, the continental slope and offshore blocks), (b) studying the variation in the rate of M = 4.5–7.0 earthquakes and in the amount of seismic energy release over time, (c) studying the seismicity variations, (d) separate estimates of earthquake recurrence for depths of 0–50 and 50–100 km. As a result, besides corroborating the fact that a quiescence occurred before the December 5, 1997, M = 7.9 Kronotskii earthquake, we also found a relationship between the start of the quiescence and the position of the seismic zone with respect to the rupture initiation. The earliest date of the quiescence (decreasing seismicity rate and seismic energy release) was due to the M = 4.5–7.0 earthquakes at depths of 0–100 km in the Kronotskii geoblock (8–9 years prior to the earthquake). The intermediate start of the quiescence was due to distant seismic zones of the Shipunskii geoblock and the circular zone using the RTL method, combining the Shipunskii and Kronotskii geoblocks (6 years). Based on the low magnitude seismicity (M≥2.6) at depths of 0–70 km in the southwestern part of the epicentral zone (50–100 km from the mainshock epicenter), the quiescence was inferred to have occurred a little over 3 years (40 months) before the mainshock time and a little over 2 years (25 months) in the immediate vicinity of the epicenter (0–50 km). These results enable a more reliable identification of other types of geophysical precursors during seismic quiescences before disastrous earthquakes.  相似文献   

2.
The Stone Canyon earthquake sequence started during August 1982 and lasted for about four months. It contained four mainshocks withM L 4, each with an aftershock zone about 4 km long. These mainshocks, progressing from southeast to northwest, ruptured a segment of the fault approximately 20 km long leaving two gaps, which were later filled by theM L =4.6 mainshocks of January 14, and May 31, 1986. The equivalent magnitude of the sequence isM L =5.0.Precursory seismic quiescence could be identified in: (1) the northernmost 10 km of the aftershock zone which contained three of the mainshocks; and (2) the southern gap in the aftershock zone. The fault segment containing the first mainshock and its aftershocks did not show quiescence. This pattern of precursory quiescence is very similar to two cases in Hawaii where the rupture initiation points of the mainshocks (M S =7.2 and 6.6, respectively) were located in volumes of constant seismicity rate, surrounded by volumes with pronounced precursory quiescence.The precursory quiescence before the August 1982 Stone Canyon earthquakes lasted for 76 weeks, amounted to a reduction in rate of about 60%, and could be recognized without any false alarms. That is, the anomaly was unique within the 60 km study segment of the fault and in the years 1975 through August 1982. Eighteen foreshocks occurred between July 27 and August 7, 1982. We conclude that the August 1982 mainshocks could have been predicted, based on seismic quiescence and foreshocks.  相似文献   

3.
刘小凤  杨立明 《地震研究》2004,27(3):209-215
通过对青藏高原北部地区31次地震的研究,确定了震前地震活动图像的中短期预测指标以及中期向短期过渡的异常判据及预测方法。研究结果表明,中强地震前普遍存在地震空区、弱震条带、前兆地震或震群、地震活动增强和平静等异常图像,所表现出的异常时间存在很大的差异。具有中短期特征的弱震空区(段)和条带一般出现在震前1~3a,平均持续时间1a,在空区解体后1~6个月发生地震。大多数前兆地震或震群活动属于短临异常,一般出现在震前几天至6个月,震级差为1.0~2.3,距离震中5~60km,空间上主要集中在祁连山地震带。地震活动增强以应力集中为主,属于短期异常特征。异常图像在时间上表现为中期阶段以孕震空区、弱震条带、地震活动增强和平静等异常,异常比较显著且不同步;短临阶段出现前兆地震和地震空区停止活动而形成的临震前的相对平静。异常图像在空间上具有较明显的分区性,与区域活动构造有一定的关系。  相似文献   

4.
The distribution of the focal mechanisms of the shallow and intermediate depth (h>40 km) earthquakes of the Aegean and the surrounding area is discussed. The data consist of all events of the period 1963–1986 for the shallow, and 1961–1985 for the intermediate depth earthquakes, withM s 5.5. For this purpose, all published fault plane solutions for each event have been collected, reproduced, carefully checked and if possible improved accordingly. The distribution of the focal mechanisms of the earthquakes in the Aegean declares the existence of thrust faulting following the coastline of southern Yugoslavia, Albania and western Greece extending up to the island of Cephalonia. This zone of compression is due to the collision between two continental lithospheres (Apulian-Eurasian). The subduction of the African lithosphere under the Aegean results in the occurrence of thrust faulting along the convex side of the Hellenic arc. These two zones of compression are connected via strike-slip faulting observed at the area of Cephalonia island. TheP axis along the convex side of the arc keeps approximately the same strike throughout the arc (210° NNE-SSW) and plunges with a mean angle of 24° to southwest. The broad mainland of Greece as well as western Turkey are dominated by normal faulting with theT axis striking almost NS (with a trend of 174° for Greece and 180° for western Turkey). The intermediate depth seismicity is distributed into two segments of the Benioff zone. In the shallower part of the Benioff zone, which is found directly beneath the inner slope of the sedimentary arc of the Hellenic arc, earthquakes with depths in the range 40–100 km are distributed. The dip angle of the Benioff zone in this area is found equal to 23°. This part of the Benioff zone is coupled with the seismic zone of shallow earthquakes along the arc and it is here that the greatest earthquakes have been observed (M s 8.0). The deeper part (inner) of the Benioff zone, where the earthquakes with depths in the range 100–180 km are distributed, dips with a mean angle of 38° below the volcanic arc of southern Aegean.  相似文献   

5.
Recent and historical seismicity as well as reliable fault plane solutions are used to study the active deformation caused by the occurrence of intermediate depth (60–170 km) earthquakes of the Vrancea region, Rumania. In this area, located in the southeastern part of the Carpathian arc, the westward subduction of the Carpathian trench has terminated, leaving continental lithosphere, at present, at the arc. The principalT axis of the intermediate depth events trends N159°E and has a plunge of 74°, which is the same as the dip of the subducted plate. TheP axis has a trend of 314° and a shallow plunge of 15°. The analysis of the moment tensor of six focal mechanisms showed that the dominant mode of deformation of the subducted lithosphere is a down-dip extension at a rate of about 2 cm/yr, based on seismicity data.  相似文献   

6.
The results of detailed seismological observations with bottom seismographs in the Central Kurile segment in August-September, 2006 are discussed. The system of six bottom seismographs was placed on the island slope of the Kurile deep-sea trench southeast of Urup Island and southwest of the Bussol Strait. Over 230 earthquakes with M LH = 0.5–5.5 were registered in the area with a radius of 150 km around the center of the observation system at depths up to 300 km during 16 days. Records of 80 earthquakes with hypocenters in the earth crust (h = 0–30 km) beneath the island slope of the Kurile deep-sea trench were first obtained by bottom seismographs. These data are inconsistent with previous concepts of aseismicity of this zone. The discovery of the unique morphological structure of the Benioff zone beneath the central Kurile Arc represents the most important result of detailed seismological observations. The zone consists of an inner seismoactive subzone, which is located beneath the island slope of the arc at depths of 15–210 km, being characterized by an angle of incline of 50° under the latter and crosses the ocean bottom approximately 80 km away from the trench axis, and outer low-activity subzone. The latter is traceable beyond the trench almost parallel to the inner zone beginning from a depth of 50 km below the sea bottom up to a depth of approximately 300 km. Due to the slightly lower incline (∼45°) of the outer subzone, both subzones gradually converge downward. The integral thickness of the Benioff zone varies from 150 km in its upper part to 125 km at depths of 210–260 km. The medium sandwiched between these subzones is practically aseismic. The reality of this defined structure is confirmed by the distribution of aftershocks of the earthquake that occurred on November 15, 2006 (M = 8.3). These seismic events served as foreshocks for the subsequent strong earthquake of January 13, 2007 (M = 8.1) with the hypocenter located beyond the trench under the ocean bottom. Such a structure of this zone within the central Kurile Arc segment is unique, having no analogues either in the flanks of the Kurile-Kamchatka Arc or other arcs. The results of detailed seismological observations obtained two months before the first of the catastrophic Central Kurile earthquakes appeared to be typical for the period of foreshocks (the lower seismic activity of the Simushir block, which hosted the hypocenter of the earthquake that occurred on November 15, 2006, particularly at depths of 0–50 km, the gentler incline of the recurrence plot, and other features).  相似文献   

7.
Summary An area of significant seismic quiescence is found near Oaxaca, southern Mexico. The anomalous area may be the site of a future large earthquake as many cases so far reported were. This conjecture is justified by study of past seismicity changes in the Oaxaca region. An interval of reduced seismicity, followed by a renewal of activity, preceded both the recent large events of 1965 and 1968. Those past earthquakes have ruptured the eastern and western portions of the present seismicity gap, respectively, so that the central part remaining is considered to be of the highest risk of the pending earthquake.The most probable estimates are: 7 1/2±1/4 for the magnitude and =16.5°±0.5°N, =96.5°±0.5W for the epicenter location. A firm prediction of the occurrence time is not attempted. However, a resumption of seismic activity in the Oaxaca region may precede a main shock.On leave from the Marine Science Institute, University of Texas, USA.  相似文献   

8.
Based on previous observations of the phenomenon of precursory seismic quiescence before crustal main shocks and recent results that indicate an increase in the occurrence of main shocks in the next years, we focus this study on the detection of the seismic quiescence situation in Greece in the beginning of 1999. We use the declustered seismicity catalogue of the Institute of Geodynamics, National Observatory of Athens (NOA) from 1968–1998, to investigate the significance of seismic quiescence for the region 19°–29°E and 34°–42°N. We searched for seismicity rate changes at every node of the grid by a moving time window and we present the results for the beginning of 1999. The results map four (4) areas having a quiescence which duration ranges from 3.8 to6 years in the beginning of 1999. Three of these areas have been devestated by catastrophic earthquakes 17–21 years ago and significant quiescence also preceded those main shocks. Based on these results, an estimate of the future seismic hazard of these areas is made.  相似文献   

9.
—We have found that the M w = 8.3 Kurile earthquake on October 4, 1994 followed an outstanding seismic quiescence starting 5–6 years before the mainshock near the ruptured area. We have analyzed three independent seismic catalogs Institute of Seismology and Volcanology, Hokkaido University (ISV), Japan Meteorological Agency (JMA) and International Seismology Center (ISC). In spite of selecting different magnitude bands and time windows all three catalogs presented the common feature of the seismic quiescence. This fact strongly suggests that the seismic quiescence should not be a man-made change but actually occurred. Moreover we have confirmed that the seismic quiescence was the most significant and the earthquake was the largest in the past twenty-five years in this region. Therefore we confidently interpret this seismic quiescence as an indication of a preparation process for the M w = 8.3 Kurile earthquake.  相似文献   

10.
Numerous cases of precursory seismic quiescence have been reported in recent years. Some investigators have interpreted these observations as evidence that seismic quiescence is a somewhat reliable precursor to moderate or large earthquakes. However, because failures of the pattern to predict earthquakes may not, in general, be reported, and because numerous earthquakes are not preceded by quiescence, the validity and reliability of the quiescence precursor have not been established.We have analyzed the seismicity rate prior to, and in the source region of, 37 shallow earthquakes (M 5.3–7.0) in central California and Japan for patterns of rate fluctuation, especially precursory quiescence. Nonuniformity in rate for these pre-mainshock sequences is relatively high, and numerous intervals with significant (p<0.10) extrema in rate are observed in some of the sequences. In other sequences, however, the rate remains within normal limits up to the time of the mainshock. Overall, in terms of an observational basis for intermediate-term earthquake prediction, no evidence is found in the cases studied for a systematic, widespread or reliable pattern of quiescence prior to the mainshocks.In earthquake sequences comprising full seismic cycles for 5 sets of (M 3.7–5.1) repeat earthquakes on the San Andreas fault near Bear Valley, California, the seismicity rates are found to be uniform. A composite of the estimated rate fluctuations for the sequences, normalized to the length of the seismic cycle, reveals a weak pattern of a low rate in the first third of the cycle, and a high rate in the last few months. While these observations are qualitative, they may represent weak expressions of physical processes occurring in the source region over the seismic cycle.Re-examination of seismicity rate fluctuations in volumes along the creeping section of the San Andreas fault specified by Wyss and Burford (1985) qualitatively confirms the existence of low-rate intervals in volumes 361, 386, 382, 372 and 401. However, only the quiescence in volume 386 is found by the present study to be statistically significant.  相似文献   

11.
Results are reported from a detailed study of central Kamchatka seismicity for the period 1962–1997 based on a modification of the traditional approach. The approach involves (a) a detailed structure of the seismic region that recognizes the Kronotskii and Shipunskii geoblocks and two further blocks, the continental slope, and the offshore portion, (b) a study of variations in the rate of M = 3.0–7.2 earthquakes and the amount of seismic energy released at depths of 0–50 and 51–100 km, (c) a study of seismicity variability, and (d) separate estimates of the recurrence of crust-mantle earthquakes (depths 0–50 km) and mantle events (51–100 km). As a result, apart from corroborating the fact of a quiescence preceding the December 5, 1997 Kronotskii earthquake (M 7.9), we also found that a relationship exists between its beginning and the position of the earthquake-generating region relative to the mainshock epicenter. The quiescence dominates the seismic process during the pre-mainshock period and is characterized by a decreased rate of earthquakes (the first feature) and a decreased amount of seismic energy release (the second feature). Based on the first feature, we found that the quiescence started in 1987 throughout the entire depth range (0–100 km) in both parts of the Kronotskii geoblock close to the rupture zone of the eponymous earthquake. As to the Shipunskii geoblock, which is farther from the rupture zone, the quiescence began in the mantle of the inner area first (1988) and somewhat later at depths of 0–50 km within the continental slope (1989). By the second feature, the quiescence began at shallower depths in the inner area of the Kronotskii geoblock at the same time and later on (a year later) in the mantle (1988). Under the continental slope of the trench in the Shipunskii geoblock the shallower quiescence also began in 1987, while it was 3 years late in the inner zone (1990) and involved the earthquake-generating earth volume at depths of 0–100 km. These data are identical with or sufficiently close to the estimate for the beginning of this quiescence using a circular area of radius 150 km that combines the Kronotskii and Shipunskii geoblocks by the RTL method (1990).  相似文献   

12.
Interplate coupling plays an important role in the seismogenesis of great interplate earthquakes at subduction zones. The spatial and temporal variations of such coupling control the patterns of subduction zone seismicity. We calculate stresses in the outer rise based on a model of oceanic plate bending and coupling at the interplate contact, to quantitatively estimate the degree of interplate coupling for the Tonga, New Hebrides, Kurile, Kamchatka, and Marianas subduction zones. Depths and focal mechanisms of outer rise earthquakes are used to constrain the stress models. We perform waveform modeling of body waves from the GDSN network to obtain reliable focal depth estimates for 24 outer rise earthquakes. A propagator matrix technique is used to calculate outer rise stresses in a bending 2-D elastic plate floating on a weak mantle. The modeling of normal and tangential loads simulates the total vertical and shear forces acting on the subducting plate. We estimate the interplate coupling by searching for an optimal tangential load at the plate interface that causes the corresponding stress regime within the plate to best fit the earthquake mechanisms in depth and location.We find the estimated mean tangential load over 125–200 km width ranging between 166 and 671 bars for Tonga, the New Hebrides, the Kuriles, and Kamchatka. This magnitude of the coupling stress is generally compatible with the predicted shear stress at the plate contact from thermal-mechanical plate models byMolnar andEngland (1990), andVan den Buekel andWortel (1988). The estimated tectonic coupling,F tc , is on the order of 1012–1013 N/m for all the subduction zones.F tc for Tonga and New Hebrides is about twice as high as in the Kurile and Kamchatka arcs. The corresponding earthquake coupling forceF ec appears to be 1–10% of the tectonic coupling from our estimates. There seems to be no definitive correlation of the degree of seismic coupling with the estimated tectonic coupling. We find that outer rise earthquakes in the Marianas can be modeled using zero tangential load.  相似文献   

13.
A seismic gap on the Anninghe fault in western Sichuan,China   总被引:10,自引:0,他引:10  
Through integrated analyses of time-varying patterns of regional seismicity, occurrence background of strong and large historical earthquakes along active faults, and temporal-spatial distribution of accu- rately relocated hypocenters of modern small earthquakes, this paper analyzes and discusses the im- plication of a 30-year-lasting seismic quiescence in the region along and surrounding the Anninghe and Zemuhe faults in western Sichuan, China. It suggests that the seismic quiescence for ML≥4.0 events has been lasting in the studied region since January, 1977, along with the formation and evaluation of a seismic gap of the second kind, the Anninghe seismic gap. The Anninghe seismic gap has the background of a seismic gap of the first kind along the Anninghe fault, and has resulted from evident fault-locking and strain-accumulating along the fault during the last 30 years. Now, two fault sections either without or with less small earthquakes exist along the Anninghe fault within the An- ninghe seismic gap. They indicate two linked and locked fault-sections, the northern Mianning section and the Mianning-Xichang section with lengths of 65 km and 75 km and elapsed time from the latest large earthquakes of 527 and 471 years, respectively. Along the Anninghe fault, characteristics of both the background of the first kind seismic gap and the seismicity patterns of the second seismic gap, as well as the hypocenter depth distribution of modern small earthquakes are comparable, respectively, to those appearing before the M=8.1 Hoh Xil earthquake of 2001 and to those emerging in the 20 years before the M=7.1 Loma Prieta, California, earthquake of 1989, suggesting that the Anninghe seismic gap is tending to become mature, and hence its mid- to long-term potential of large earthquakes should be noticeable. The probable maximum magnitudes of the potential earthquakes are estimated to be as large as 7.4 for both the two locked sections of the Anninghe fault.  相似文献   

14.
A simplified multiple source model was constructed for the 1975 HawaiiM s=7.2 earthquake by matching synthetic signals with three component accelerograms at two stations located approximately 45 km from the epicenter. Six major subevents were identified and located approximately. The signals of these are larger by factors of 1.4 to 3.2 than that of theM L=5.9 foreshock which occurred 70 minutes before the main rupture and also triggered the SAM-1 recorders at the two stations. Dividing the rupture length (40 km) by the duration of strong ground shaking ( 50 sec) an, average rupture velocity of 0.8 km/sec (about 25% of S-velocity) is obtained. Thus it is likely that the rupture stopped between subevents. The approximate epicenters of the 6 major subevents, and of the foreshock, support the hypothesis that they were located in high stress asperities which rupture during the main shock, except for the last events which is interpreted as a stopping phase generated at a barrier. These asperities have been previously defined on the basis of differences in the precursor pattern before the mainshock. Thus, it appears that both the details of the precursors and of the main rupture depended critically on the heterogeneous tress distribution in the source volume. This suggests that main rupture initiation points and locations of high rupture accelerations may be identified before the mainshock occurs, based on precursor anomaly patterns. A satisfactory match of synthetic signals with the observations could be obtained only if the aximuth of the fault plane of subevents was rotated from N60°E to N90°E and back to N30°E. These orientations are approximately parallel to the nearest Kilauea rift segments. Hence the slip directions and greatest principal stresses were oriented perpendicular to the rifts everywhere. From this analysis and other work, it is concluded that this fault surface consisted of three types of segments with different strength: hard asperities (radius 5 km), soft but brittle segments between the asperities (radius 5 km), and a viscous half (10×40 km) which slipped during the mainshock, but where microearthquakes and aftershocks are not common.  相似文献   

15.
The characteristics of spatio-temporal seismicity evolution before the Wenchuan earthquake are studied. The results mainly involve in the trend abnormal features and its relation to the Wenchuan earthquake. The western Chinese mainland and its adjacent area has been in the seismically active period since 2001, while the seismic activity shows the obvious quiescence of M≥?7.0, M≥?6.0 and M?≥5.0 earthquakes in Chinese mainland. A quiescence area with M?≥7.0 has been formed in the middle of the North-South seismic zone since 1988, and the Wenchuan earthquake occurred just within this area. There are a background seismicity gap of M?≥5.0 earthquakes and a seismogenic gap of ML?≥4.0 earthquakes in the area of Longmenshan fault zone and its vicinity prior to the Wenchuan earthquake. The seismic activity obviously strengthened and a doughnut-shape pattern of M?≥4.6 earthquakes is formed in the middle and southern part of the North-South seismic zone after the 2003 Dayao, Yunnan, earthquake. Sichuan and its vicinity in the middle of the doughnut-shape pattern show abnormal quiescence. At the same time, the seismicity of earthquake swarms is significant and shows heterogeneity in the temporal and spatial process. A swarm gap appears in the M4.6 seismically quiet area, and the Wenchuan earthquake occurred just on the margin of the gap. In addition, in the short term before the Wenchuan earthquake, the quiescence of earthquake with ML≥?4.0 appears in Qinghai-Tibet block and a seismic belt of ML?≥3.0 earthquakes, with NW striking and oblique with Longmenshan fault zone, is formed.  相似文献   

16.
In this study, the seismic quiescence prior to hazardous earthquakes was analyzed along the Sumatra-Andaman subduction zone (SASZ). The seismicity data were screened statistically with mainshock earthquakes of M w?≥?4.4 reported during 1980–2015 being defined as the completeness database. In order to examine the possibility of using the seismic quiescence stage as a marker of subsequent earthquakes, the seismicity data reported prior to the eight major earthquakes along the SASZ were analyzed for changes in their seismicity rate using the statistical Z test. Iterative tests revealed that Z factors of N?=?50 events and T?=?2?years were optimal for detecting sudden rate changes such as quiescence and to map these spatially. The observed quiescence periods conformed to the subsequent major earthquake occurrences both spatially and temporally. Using suitable conditions obtained from successive retrospective tests, the seismicity rate changes were then mapped from the most up-to-date seismicity data available. This revealed three areas along the SASZ that might generate a major earthquake in the future: (i) Nicobar Islands (Z?=?6.7), (ii) the western offshore side of Sumatra Island (Z?=?7.1), and (iii) western Myanmar (Z?=?6.7). The performance of a stochastic test using a number of synthetic randomized catalogues indicated these levels of anomalous Z value showed the above anomaly is unlikely due to chance or random fluctuations of the earthquake. Thus, these three areas have a high possibility of generating a strong-to-major earthquake in the future.  相似文献   

17.
Shallow seismicity and available source mechanisms in the Andaman–westSunda arc and Andaman sea region suggest distinct variation in stressdistribution pattern both along and across the arc in the overriding plate.Seismotectonic regionalisation indicates that the region could be dividedinto eight broad seismogenic sources of relatively homogeneousdeformation. Crustal deformation rates have been determined for each oneof these sources based on the summation of moment tensors. The analysisshowed that the entire fore arc region is dominated by compressive stresseswith compression in a mean direction of N23°, and the rates ofseismic deformation velocities in this belt decrease northward from 5.2± 0.65 mm/yr near Nias island off Sumatra and 1.12 ±0.13 mm/yr near Great Nicobar islands to as much as 0.4 ±0.04 mm/yr north of 8°N along Andaman–Nicobar islandsregion. The deformation velocities indicate, extension of 0.83 ±0.05 mm/yr along N343° and compression of 0.19 ±0.01 mm/yr along N73° in the Andaman back arc spreadingregion, extension of 0.18 ± 0.01 mm/yr along N125° andcompression of 0.16 ± 0.01 mm/yr along N35° in NicobarDeep and west Andaman fault zone, compression of 0.84 ±0.12 mm/yr N341° and extension of 0.77 ± 0.11 mm/yralong N72° within the transverse tectonic zone in the Andamantrench, N-S compression of 3.19 ± 0.29 mm/yr and an E-Wextension of 1.24 ± 0.11 mm/yr in the Semangko fault zone ofnorth Sumatra. The vertical deformation suggests crustal thinning in theAndaman sea and crustal thickening in the fore arc and Semangko faultzones. The apparent stresses calculated for all major events range between0.1–10 bars and the values increase with increasing seismic moment.However, the apparent stress estimates neither indicate any significantvariation with faulting type nor display any variation across the arc, incontrast to the general observation that the fore arc thrust events showhigher stress levels in the shallow subduction zones. It is inferred that theoblique plate convergence, partial subduction of 90°E Ridge innorth below the Andaman trench and the active back arc spreading are themain contributing factors for the observed stress field within the overridingplate in this region.  相似文献   

18.
An earthquake sequence comprising almost 2000 events occurred in February–July 2001 on the southern coast of the Corinth Gulf.Several location methods were applied to 171 events recorded by the regional network PATNET. The unavailability of S-wave readings precluded from reliable depth determination. For the mainshock of April 8, ML= 4.7, the depth varied from 0 to 20 km. The amplitude spectra of complete waveforms at three local stations (KER,SER, DES; epicentral distances 17, 26 and 56 km) were inverted between 0.1 and 0.2 Hz for double-couple focal mechanism and also for the depth. The optimum solution (strike 220°, dip 40°, rake ‒160°, and depth of 8 km) was validated by forward waveform modeling.Additionally, the mainshock depth was further supported by the P- and S-wave arrival times from the local short-period network CRLNET (Corinth Rift Laboratory).The scalar seismic moment was 2.5e15 Nm,and the moment rate function was successfully simulated by a triangle of the 0.5 second duration. This is equivalent to a 1–1.5 km fault length, and a static stress drop 2–6 MPa. This value is important for future strong ground motion simulation of damaging earthquakes in Aegion region, whose subevents may be modeled according to the studied event. The T axis of the mainshock (azimuth 176° and plunge 67°), is consistent with the regional direction of extension N10°. However, none of the nodal planes can be associated to an active structure seen at the surface. The relationship of this earthquake sequence with deeper faults (e.g. possible detachment at about 10 km) is also unclear.  相似文献   

19.
The variations of seismicity rate in Central Apenninesprior to the sequence started in September, 1997 (at00:33 UTC, M L5.6) has been analysedby statistical methods, with the purpose of pointingup eventual periods of quiescence. The analysis wascarried out on the instrumental catalogue of theIstituto Nazionale di Geofisica (ING), covering theperiod from January 1975 to March 1998. In apreliminary phase, the catalogue was declustered usingthe Reasenberg algorithm. After that, eventualmagnitude shifts due to variations in the modalitiesof observation have been individuated and corrected.The subsequent analysis, carried out making use of theZmap software package, has put in evidence thatthe sequence of September 1997 was preceded bya 2.5 year period characterised by absence of eventsof magnitude larger than 3.2, in an area approximately20 × 40 km wide, including the epicentre of themain shock. The statistical methodology shows thatonly 1/103 of the space-time volumes analysed inthis study, exhibited quiescence of the same level.The study of seismicity rate change correlated toprevious main shocks in a larger area of CentralApennines shows that none of them were preceded by aseismic quiescence, specially close to the epicentreof the main shock, and lasting until the time ofoccurrence of the main shock as in the 1997 case.Actually, we found other patterns of precursoryquiescence with different time or space distribution.We conclude that precursory quiescence is a realfeature of Central Apennines seismicity, but it isdifficult to define a simple hypothesis, which appliesto the generality of cases and can be tested beforeimplementation in a system of earthquake riskmitigation.  相似文献   

20.
We propose a thermal model of the subducting Ionian microplate. The slab sinks in an isothermal mantle, and for the boundary conditions we take into account the relation between the maximum depth of seismicity and the thermal parameter Lth of the slab, which is a product of the age of the subducted lithosphere and the vertical component of the convergence rate. The surface heat-flux dataset of the Ionian Sea is reviewed, and a convective geotherm is calculated in its undeformed part for a surface heat flux of 42 mW m–2, an adiabatic gradient of 0.6 mK m–1, a mantle kinematic viscosity of 1017 m2 s–1 and an asthenosphere potential temperature of 1300°C. The calculated temperature-depth distribution compared to the mantle melting temperature indicates the decoupling limit between lithosphere and asthenosphere occurs at a depth of 105 km and a temperature of 1260°C. A 70–km thick mechanical boundary layer is found. By considering that the maximum depth of the seismic events within the slab is 600 km, a Lth of 4725 km is inferred. For a subduction rate equal to the spreading rate, the corresponding assimilation and cooling times of the microplate are about 7 and 90 Myr, respectively. The thermal model assumes that the mantle flow above the slab is parallel and equal to the subducting plate velocity of 6 cm yr–1, and ignores the heat conduction down the slab dip. The critical temperature, above which the subduced lithosphere cannot sustain the stress necessary to produce seismicity, is determined from the thermal conditions governing the rheology of the plate. The minimum potential temperature at the depth of the deepest earthquake in the slab is 730°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号