首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
An experimental repeater for amplification and regeneration of 50 Mb/s fiber-optical pulses has been built and tested. For the receiver either Si p-i-n or avalanche photodiodes are used in conjunction with a high impedance FET input amplifier. The high voltage for the avalanche photodiode is generated internally and controlled by the received signal. This AGC circuit is capable of compensating for temperature changes of the avalanche gain over the range of-40 - +60degC. The optical transmitter consists of either a GaAs light emitting diode or a GaA1As laser diode coupled to optical fibers and directly modulated by a current driver with 30 percent electrical efficiency. For 10-9error rate, the required average optical signal power for a pseudorandom signal is p-i-n diode: -41.5 dBm; avalanche diode: -56.6 dBm. The optical output power into a fiber with 1 percent index difference is LED: -17 dBm; GaAlAs laser: 0 dBm. The repeater power requirement is about 2 W.  相似文献   

2.
A laser light injection technique was studied to realize a semiconductor laser transmitter oscillating in a 1.55 μm single-longitudinal mode. When -15 dBm optical power was injected into the directly modulated laser, no dispersion degradation was observed in the error rate characteristics after transmitting through 44.3 km single-mode fibers at 100 Mbits/s. Effective gain coefficientg-alpha, measured by the light injection method, was 45 cm-1near threshold. As this gain was sufficiently saturated at the -15 dBm injection power, undesired longitudinal modes in the modulated laser were suppressed.  相似文献   

3.
This paper demonstrates a novel optical preamplifier using optical modulation of amplified spontaneous emission (ASE) emitted from a saturated semiconductor optical amplifier (SOA). Requirements on optical alignments and antireflection coating for SOAs can be relaxed and the elimination of an optical filter gives us a large tolerance of an input light wavelength in the proposed optical preamplifier. A small-signal gain of a fabricated preamplifier was over 13.5 dB for an input power of below -20 dBm. An optical gain bandwidth was over 60 nm. We measured the small-signal response of the optically modulated ASE. The 3 dB bandwidths at SOA bias currents of 200, 300, and 400 mA were 5.8, 12.6, and 16.5 GHz, respectively. We also investigated improvements in receiver sensitivities with the proposed optical preamplifier. Our calculation shows a possibility of 10 dB improvement in receiver sensitivities by using the optical preamplifier at 10 Gb/s. The measured receiver sensitivity was -22.7 dBm at 10 Gb/s with the optical preamplifier, which is corresponding to an improvement of 2.5 dB in the receiver sensitivity. Further improvements of the receiver sensitivity can be expected by optimizing the structure of SOAs for saturating ASE.  相似文献   

4.
报道了一种新型基于环形激光腔的增益钳制掺铒光纤放大器。得到了较好的增益钳制效果和增益平坦度,利用980nm半导体激光器泵浦12m长掺铒光纤形成激光增益,观测到 30nm增益带宽。通过反馈1520nm 激光,在可变衰减器不同值测量了输入信号从- 40 ~10dBm的增益,其小信号增益被钳制在16dB。可为40个波分复用(WDM)信道波长提供增益钳制及平坦的放大功能。  相似文献   

5.
利用0.25μmGaAsPHEMT低噪声工艺,设计并制造了2种毫米波大动态宽带单片低噪声放大器。第1种为低增益大动态低噪声放大器,单电源+5V工作,测得在26~40GHz范围内,增益G=10±0.5dB,噪声系数NF≤2.2dB,1分贝压缩点输出功率P1dB≥15dBm;第2种为低压大动态低噪声放大器,工作电压为3.6V,静态电流0.6A(输出功率饱和时,动态直流电流约为0.9A),在28~35GHz范围内,测得增益G=14~17dB,噪声系数约4.0dB,1分贝压缩点输出功率P1dB≥24.5dBm,最大饱和输出功率≥26.8dBm,附加效率约10%~13.6%。结果中还给出了2种放大器直接级联的情况。  相似文献   

6.
A high-efficient GaAs power metal semiconductor field effect transistor operating at a drain voltage of 2.3 V has been developed for low distortion power applications. The device has been fabricated on an epitaxial layer with a high-low doped structure grown by molecular beam epitaxy. The MESFET with a gate length of 0.8 μm and a total gate width of 21.16 mm showed a maximum drain current of 5.9 A at Vgs =0.5 V, a knee voltage of 1.0 V and a gate-to-drain breakdown voltage of 28 V. The MESFET tested at a 2.3 V drain bias and a 900 MHz operation frequency displayed the best power-added efficiency of 68% with an output power of 31.3 dBm. The associate power gain at 20 dBm input power and the linear gain were 11.3 dB and 16.0 dB, respectively. The power characteristics of the device operating under a bias of 2 V exhibit power-added efficiency of 67% and output power of 30.1 dBm at an input power of 20 dBm. Two tone test measured at 900.00 MHz and 900.03 MHz shows that 3rd-order intermodulation and power-added efficiency at an output power of 27 dBm were -30.6 dBc and 36%, respectively, which are good for CDMA digital applications. A third-order intercept point and a linearity figure-of-merit were measured to be 49.5 dBm and 53.8, respectively  相似文献   

7.
In this paper, a distributed circuit topology for active mixers suitable for ultra-wideband operations is presented. By employing nonuniform artificial transmission lines with the complementary transconductance stages in the Gilbert-cell multiplier, the proposed mixer demonstrates broadband characteristics at microwave frequencies while maintaining a high conversion gain (CG) with improved gain flatness. Using a 0.18-mum CMOS process, the proposed circuit is implemented, exhibiting a -3-dB bandwidth of 28 GHz. With a local-oscillator power of 3 dBm and an IF frequency of 10 MHz, the fabricated circuit has a CG of 12.5plusmn1 dB and an average input third-order intercept point (IIP3) of 0 dBm within the entire frequency range. The fully integrated wideband mixer occupies a chip area of 0.87times0.82 mm2 and consumes a dc power of 20 mW from a 2-V supply voltage  相似文献   

8.
Multifunctional properties of an InGaAsP semiconductor laser amplifier have been evaluated. A bit error rate of 10-9 at 100 Mb/s was obtained using the amplifier as a detector at a received optical power of -27 dBm with simultaneous cavity gain of 16 dB. The bandwidth of the amplifier detector was 300 MHz and the maximum responsivity was 30 V/W. The amplifier had a maximum gain of 29 dB and a very large optical on/off ratio of 50 dB. When the amplifier was used as a switch the cavity gain was 19 dB and the extinction ratio was 22 dB  相似文献   

9.
孙昕  陈莹  陈丽  李斌 《半导体技术》2017,42(8):569-573,597
采用稳懋公司150 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,设计了一款5 ~ 10 GHz单片微波集成电路(MMIC)低噪声放大器(LNA).该LNA采用三级级联结构,且每一级采用相同的偏压条件,电路的低频工作端依靠电容反馈,高频工作端依靠电阻反馈调节阻抗匹配,从而实现宽带匹配,芯片面积为2.5 mm×1 mm.测试结果表明,工作频率为5~10 GHz,漏极电压为2.3V,工作电流为70 mA时,LNA的功率增益达到35 dB,平均噪声温度为82 K,在90%工作频段内输入输出回波损耗优于-15 dB,1 dB压缩点输出功率为10.3 dBm,仿真结果与实验结果具有很好的一致性.  相似文献   

10.
A two-stage ultra-wide-band CMOS low-noise amplifier (LNA) is presented. With the common-gate configuration employed as the input stage, the broad-band input matching is obtained and the noise does not rise rapidly at higher frequency. By combining the common-gate and common-source stages, the broad-band characteristic and small area are achieved by using two inductors. This LNA has been fabricated in a 0.18-mum CMOS process. The measured power gain is 11.2-12.4 dB and noise figure is 4.4-6.5 dB with -3-dB bandwidth of 0.4-10 GHz. The measured IIP3 is -6 dBm at 6 GHz. It consumes 12 mW from a 1.8-V supply voltage and occupies only 0.42 mm2  相似文献   

11.
A wideband GaInP/GaAs heterojunction bipolar transistor (HBT) micromixer from DC to 8 GHz with 11 dB single-ended conversion gain is demonstrated. The input return loss is better than 10 dB for frequencies up to 9 GHz. The single-to-differential input stage in a Gilbert micromixer renders good wideband frequency response and eliminates the need for common-mode rejection. IP/sub 1dB/=-17 dBm and IIP/sub 3/=-7 dBm are achieved for a small local oscillator power of -2 dBm when LO=5.35 GHz and RF=5.7 GHz.  相似文献   

12.
A microwave phase shifter with an integrated optics structure with high efficiency is discussed. The structure and the performance of the device are discussed. Microwave phase shifting was carried out using the fabricated phase shifter of titanium diffused LiNbO3 optical waveguides. The measured voltage to obtain halfwave phase shift for a 800 MHz microwave signal was 7.0 V. The input microwave power was 21 dBm, and the detected output microwave power was -24 dBm, so the microwave insertion loss was calculated to be approximately -45 dB. The optical insertion loss of the device was -12 dB  相似文献   

13.
陈昌麟  张万荣 《电子器件》2015,38(2):321-326
采用自适应偏置技术和有源电感实现了一款输出匹配可调的、高线性度宽带功率放大器(PA)。自适应偏置技术抑制了功放管直流工作点的漂移,提高了PA的线性度。有源电感参与输出匹配,实现了输出匹配可调谐,该策略可调整因工艺偏差、封装寄生造成的输出匹配退化。利用软件ADS对电路进行验证,结果表明,在4 GHz频率下,输入1dB压缩点(Pin 1dB)为-7dBm,输出1dB压缩点(Pout 1dB)为11dBm,功率附加效率(PAE)为8.7%。在3.1GHz~4.8 GHz频段内,增益为(20.3±1.1)d B,输入、输出的回波损耗均小于-10dB。  相似文献   

14.
A novel low power RF receiver front-end for 3-5 GHz UWB is presented. Designed in the 0.13μm CMOS process, the direct conversion receiver features a wideband balun-coupled noise cancelling transconductance input stage, followed by quadrature passive mixers and transimpedance loading amplifiers. Measurement results show that the receiver achieves an input return loss below-8.5 dB across the 3.1-4.7 GHz frequency range, max-imum voltage conversion gain of 27 dB, minimum noise figure of 4 dB, IIP3 of-11.5 dBm, and IIP2 of 33 dBm. Working under 1.2 V supply voltage, the receiver consumes total current of 18 mA including 10 mA by on-chip quadrature LO signal generation and buffer circuits. The chip area with pads is 1.1 × 1.5 mm2.  相似文献   

15.
提出一种自适应线性化偏置的电路结构,通过调节控制电压改变偏置管的工作状态,提高功率放大电路的线性度,降低偏置电流对参考电压和环境温度的敏感度.利用双反馈环结构抑制输入阻抗随频率的变化,实现了宽带匹配,拓展了放大器的带宽.采用微波电路仿真软件AWR进行仿真,验证了带宽范围内的相位偏离度在2°以内.基于2μm InGaP/GaAs HBT工艺,设计了集成电路版图并成功流片.测试结果表明:在3.5V电压供电下,该放大器在1~2.5 GHz频带范围内,输入反射系数均在-10 dB以下,功率增益为23 dB,输出功率大于30 dBm,误差向量幅度在2.412 GHz时为.2.7%@24 dBm,最大功率附加效率达40%.  相似文献   

16.
A 77 GHz 90 nm CMOS power amplifier (PA) demonstrates a gain of 17.4 dB and a saturated output power of 5.8 dBm at a low supply voltage of 0.7 V. To take care of hot-carrier injection degradation, the supply voltage is reduced from a standard voltage of 1.0 V. The saturated output power is increased to 9.4 dBm with a linear gain of 20.6 dB at 1.0 V operation. The amplifier consists of three-stage common-source nMOSFETs with gate widths of 40, 80, and 160 $mu{rm m}$. To our best knowledge, the developed PA shows the highest gain ever achieved for W-band CMOS amplifier. The measured temperature characteristics suggest that a simple compensation technique is possible by gate bias control.   相似文献   

17.
The authors present theoretical and experimental results for coherent subcarrier multiplexed (SCM) systems using a novel architecture that shares both the transmitter and local oscillator (LO) laser among multiple optoelectronic receivers. The ability to share both lasers significantly reduces the cost and complexity compared to a multichannel coherent frequency division multiplexed (FDM) system. Experimental results confirm that the system performance can be greatly enhanced by inserting an inline optical amplifier so that many receivers can share one transmitter and LO laser. For example, with an amplifier chip gain of 24 dB, increasing the optical power at the input to the amplifier by 3 dB from -27.6 to -24.5 dBm, the number of receivers can be increased from 2 to 32  相似文献   

18.
研制了一款60~90 GHz功率放大器单片微波集成电路(MMIC),该MMIC采用平衡式放大结构,在较宽的频带内获得了平坦的增益、较高的输出功率及良好的输入输出驻波比(VSWR)。采用GaAs赝配高电子迁移率晶体管(PHEMT)标准工艺进行了流片,在片测试结果表明,在栅极电压为-0.3 V、漏极电压为+3 V、频率为60~90 GHz时,功率放大器MMIC的小信号增益大于13 dB,在71~76 GHz和81~86 GHz典型应用频段,功率放大器的小信号增益均大于15 dB。载体测试结果表明,栅极电压为-0.3 V、漏极电压为+3 V、频率为60~90 GHz时,该功率放大器MMIC饱和输出功率大于17.5 dBm,在71~76 GHz和81~86 GHz典型应用频段,其饱和输出功率可达到20 dBm。该功率放大器MMIC尺寸为5.25 mm×2.10 mm。  相似文献   

19.
张振  范如东  罗俊 《微电子学》2012,42(4):463-465,476
介绍了一种小型化平衡式限幅低噪声放大器。该放大器采用Lange桥平衡结构,在实现低噪声的同时,保证了小电压驻波比;在3.0~3.5GHz频带内,噪声系数小于1.3dB,输入输出驻波系数小于1.3,增益大于27dB,平坦度±0.6dB以内,输出1dB压缩点大于12dBm。该放大器能够承受最大5W的连续波功率输入,且大功率输入时的驻波系数小于1.3。  相似文献   

20.
The authors have constructed a Pr3+-doped fluoride amplifier (PDFA) module pumped by an Nd-YLF laser. The maximum signal gain and noise figure were 20 dB and 5 dB respectively. An output power of 19.2 dBm was achieved at an input signal power of 11.0 dBm. It was confirmed that this PDFA module has low-noise characteristics from experimental results on its use in a subcarrier multiplexed multichannel AM-VSB video signal transmission  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号