首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
生物柴油制备新工艺的研究进展   总被引:4,自引:0,他引:4  
综述了生物柴油的特性及其生产方法,介绍了酯交换法制备生物柴油的反应机理及其近年来出现的各种新生产工艺,包括超临界法、生物催化法、超声波法、离子液体法等,指出了生物柴油技术发展面临的问题及研究方向。  相似文献   

2.
地沟油制备生物柴油作为可再生能源具有巨大的潜力。作为制备生物柴油的原料,地沟油具有可再生、环境友好、使用和运输安全等优点。地沟油需经过酯交换转化为生物柴油。文中介绍了酯交换法在地沟油制备生物柴油生产中的应用,其中着重介绍地沟油经超临界甲醇酯交换法制备生物柴油。提出地沟油超临界酯交换制备生物柴油研究意见及优化工艺方法。  相似文献   

3.
植物油作为发动机燃料及生物柴油制备的研究   总被引:9,自引:0,他引:9  
本文详细介绍了植物油作为发动机燃料的4种应用方式。生物柴油是绿色可再生能源,由动植物油的酯交换反应获得。讨论了生物柴油制备过程中的反应动力学以及水份、游离脂肪酸、催化剂、醇油摩尔比、反应温度等对酯交换的影响。  相似文献   

4.
地沟油制取生物柴油的试验研究   总被引:3,自引:0,他引:3  
生物柴油是由植物油或动物脂肪通过酯交换反应而得到,由于生物柴油具有无毒,可生物降解和可再生的特性,因此受到越来越多的关注.分析生物柴油的制备方法,研究以地沟油为原料,以浓H2SO4为催化剂催化甲酯化制备生物柴油的工艺条件;分析所得产品的理化特性,验证所得产品具有较好的柴油机燃烧特性.  相似文献   

5.
GW050101 麻风树油进行膳肪酶催化酯交换制备生物柴油.S SHAN,SHARMA S,GUPTA M N.Energy and Fuels,;GW050102 用于制取生物柴油的各种均相催化剂的比较.VICENTE G,MARTINEz M,ARZCIL J.Bioresouroe Technology;……  相似文献   

6.
制备生物柴油所用催化剂的研究进展   总被引:3,自引:0,他引:3  
张世敏  张无敌  尹芳 《节能技术》2007,25(6):493-496,500
生物柴油作为一种清洁的可再生能源,可以由动植物油脂通过酯交换反应来制备.本文概述了近年来制备生物柴油的多种催化剂,并探讨了各自的优点及缺陷.  相似文献   

7.
对制备清洁能源——生物柴油的化学催化酯交换法及其他方法,生产生物柴油的反应器及其后续开发利用等进行总结,并分析目前生物柴油在发展过程中所存在的问题,对其未来发展方向提出一些建议。  相似文献   

8.
生物柴油及其生产技术的进展   总被引:5,自引:0,他引:5  
介绍了由可再生油脂原料衍生的环保燃料生物柴油在国内外应用现状,重点介绍了酯交换法制备生物柴油技术研究进展情况,展望了生物柴油产业在我国的发展前景。  相似文献   

9.
固体酸催化剂在生物柴油合成实验中的研究   总被引:2,自引:0,他引:2  
针对生物柴油催化合成技术中,采用一般催化剂所存在的问题,自制了4种固体酸催化剂,测试了它们在以大豆酸化油为原料制备生物柴油反应中的催化活性及重复使用性,确定了合成生物柴油的工艺条件。  相似文献   

10.
废弃油脂含有较多的游离脂肪酸,使用传统方法制备生物柴油时,必须先除去其所含的游离脂肪酸,这将会使过程复杂且增加成本.以浓H2SO4为催化剂,将游离脂肪酸先进行甲酯化,再以NaOH为催化剂,对甘油三酯进行酯交换制备生物柴油,通过正交试验分析游离脂肪酸甲酯化及甘油三酯酯交换的最佳条件.产品检测结果表明,由废弃油脂制备的生物柴油产品完全符合要求,可以替代矿物柴油使用.  相似文献   

11.
Biofuels are renewable solutions to replace the ever dwindling energy reserves and environmentally pollutant fossil liquid fuels when they are produced from low cost sustainable feedstocks. Biodiesel is mainly produced from vegetable oils or animal fats by the method of transesterification reaction using catalysts. Homogeneous catalysts are conventionally used for biodiesel production. Unfortunately, homogeneous catalysts are associated with problems which might increase the cost of production due to separation steps and emission of waste water. Inorganic heterogeneous catalysts are potentially low cost and can solve many of the problems encountered in homogeneous catalysts. Many solid acid and base inorganic catalysts have been studied for the transesterification of various vegetables oils. The work of many researchers on the development of active, tolerant to water and free fatty acids (FFA), as well as stable inorganic catalysts for biodiesel production from vegetable oils are reviewed and discussed.  相似文献   

12.
随着生物柴油的规模化发展,其副产物甘油的高效利用成为影响生物柴油成本和新一代化学品平台工艺开发的重要问题。将甘油转化为氢气符合未来能源对可再生和CO2净零排放的要求,正受到新能源研究领域的密切关注。综述了甘油水蒸汽重整制氢的热力学、反应机理和催化剂的研究现状,对甘油水蒸汽重整未来的发展进行了评述。  相似文献   

13.
生物柴油研究进展   总被引:13,自引:1,他引:13  
综述了国内外生物柴油技术的研究进展及应用状况,介绍了直接混合、微乳液、高温热裂解及酯交换等生物柴油的生产方法,并对生物柴油产业化发展前景进行了展望。  相似文献   

14.
This paper, reports experimental work on the use of new heterogeneous solid basic catalysts for biodiesel production: double oxides of Mg and Al, produced by calcination, at high temperature, of MgAl lamellar structures, the hydrotalcites (HT). The most suitable catalyst system studied are hydrotalcite Mg:Al 2:1 calcinated at 507 °C and 700 °C, leading to higher values of FAME also in the second reaction stage. One of the prepared catalysts resulted in 97.1% Fatty acids methyl esters (FAME) in the 1st reaction step, 92.2% FAME in the 2nd reaction step and 34% FAME in the 3rd reaction step. The biodiesel obtained in the transesterification reaction showed composition and quality parameters within the limits specified by the European Standard EN 14214. 2.5% wt catalyst/oil and a molar ratio methanol:oil of 9:1 or 12:1 at 60–65 °C and 4 h of reaction time are the best operating conditions achieved in this study. This study showed the potential of Mg/Al hydrotalcites as heterogeneous catalysts for biodiesel production.  相似文献   

15.
This work focuses on the development of heterogeneous catalysts for biodiesel production from high free fatty acid (FFA) containing Jatropha curcas oil (JCO). Solid base and acid catalysts were prepared and tested for transesterification in a batch reactor under mild reaction conditions. Mixtures of solid base and acid catalysts were also tested for single-step simultaneous esterification and transesterification. More soap formation was found to be the main problem for calcium oxide (CaO) and lithium doped calcium oxide (Li-CaO) catalysts during the reaction of jatropha oil and methanol than for the rapeseed oil (RSO). CaO with Li doping showed increased conversion to biodiesel than bare CaO as a catalyst. La2O3/ZnO, La2O3/Al2O3 and La0.1Ca0.9MnO3 catalysts were also tested and among them La2O3-ZnO showed higher activity. Mixture of solid base catalysts (CaO and Li-CaO) and solid acid catalyst (Fe2(SO4)3) were found to give complete conversion to biodiesel in a single-step simultaneous esterification and transesterification process.  相似文献   

16.
The preparation of a Li-doped MgO for biodiesel synthesis has been investigated by optimizing the catalyst composition and calcination temperatures. The results show that the formation of strong base sites is particularly promoted by the addition of Li, thus resulting in an increase of the biodiesel synthesis. The catalyst with the Li/Mg molar ratio of 0.08 and calcination temperature of 823 K exhibits the best performance. The biodiesel conversion decreases with further increasing Li/Mg molar ratio above 0.08, which is most likely attributed to the separated lithium hydroxide formed by excess Li ions and a concomitant decrease of BET values. In addition, the effects of methanol/oil molar ratio, reaction time, catalyst amount, and catalyst stability were also investigated for the optimized Li-doped MgO. The metal leaching from the Li-doped MgO catalysts was detected, indicating more studies are needed to stabilize the catalysts for its application in the large-scale biodiesel production facilities.  相似文献   

17.
In the present paper state-of-the art and perspectives of ultrasound-assisted (UA) biodiesel production from different oil-bearing materials using acid, base and enzyme catalysts are critically discussed. The ultrasound action in biodiesel production is primarily based on the emulsification of the immiscible liquid reactants by microturbulence generated by radial motion of cavitation bubbles and the physical changes on the surface texture of the solid catalysts generating new active surface area. The importance of ultrasound characteristics and other process variables for the biodiesel yield and the reaction rate is focused on. UA transesterification is compared with other techniques for biodiesel production. Several different developing methods reducing the biodiesel production costs such as the optimization of process factors, the development of the process kinetic models, the use of phase transfer catalysts, the application of the continuous process, the design of novel types of ultrasonic reactors and the in situ ultrasound application in transesterification of oily feedstocks are also discussed.  相似文献   

18.
生物柴油——绿色能源   总被引:5,自引:0,他引:5  
介绍生物柴油的概念与特点,发展生物柴油的意义,生物柴油的生产原料与生产技术,生物柴油发展现状与前景展望,以及上海市生物柴油研究与应用现状,并提出了发展生物柴油产业急需解决的问题。  相似文献   

19.
In recent decades, the energy crisis and environmental issues have become a crucial problem. The rapid industrialization has lead humankind to deplete the fossil fuels and consequently the pollutant emissions have increased in the world. Many investigations have been done to find an alternative fuel to fulfill increasing energy demand. Recently, biodiesel has been introduced as an economical renewable and sustainable fuel which is cited as an environment-friendly resource. Around 350 oil-bearing crops were analyzed and some of them were capable to be considered as potential alternative fuels for diesel engines. These include virgin vegetable oils and waste vegetable oils. Rapeseed, jatropha, soybean, and palm oil are mentioned as the most common sources of biodiesel. Many countries have invested in biodiesel as an acceptable source of energy not only in research area but also in production and export. It has been proven that the biodiesel combustion characteristics are similar as petroleum. Higher ignition pressure and temperature, shorter ignition delay and higher peak release were reported in experimental combustion of biodiesel blends. Also, the efficiency of biodiesel base catalysts is more than enzymes and acid catalysts. This article is a literature review on necessity of biodiesel production as alternative fuel recourse in Malaysia and tries to illustrate the combustion characteristics and pollutant formation in biodiesel application.  相似文献   

20.
多相催化剂用于制备生物柴油的研究进展   总被引:2,自引:0,他引:2  
生物柴油是绿色可再生能源,属环境友好型燃料,是常规的化学柴油的优良替代品。综述了酯交换方法生产生物柴油过程中的多相催化剂的研究进展,主要包括固体酸催化剂、固体碱催化剂、固定化酶的研究状况,并对催化油脂酯交换反应的多相催化剂的今后研究方向提出几点建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号