首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study electrochemical inactivation of selected bacteria living in paper mill circulating waters was investigated. Three aerobic bacteria species (Deinococcus geothermalis, Pseudoxanthomonas taiwanensis and Meiothermus silvanus) were inactivated effectively (>2 log) at a mixed metal oxide (MMO) electrode in 3 min. The influence of parameters, such as current density and initial pH or chloride concentration of synthetic paper machine water (SPW) on the inactivation efficiency were studied. Increasing current density and initial chloride concentration of SPW increased the inactivation rate but change of pH value did not have significant influence on the inactivation rate. It was observed that inactivation was mainly due to the electrochemically generated chlorine/hypochlorite. Electrochemical oxidation showed good performance for inactivation these primary biofilm forming bacteria species with improved current efficiency by higher initial chloride concentrations.  相似文献   

2.
The decolorization of the levafix orange textile dye in aqueous solution by electrocoagulation using aluminum sacrificial anode has been investigated. The process performance is analyzed in terms of decolorization efficiency and the important cost-related parameters such as electrode and energy consumptions, as a function of initial pH, conductivity, current density, initial dye concentration and electrolysis time. The present study proves the effectiveness of electrochemical treatment for the textile dye solution. 95% decolorization efficiency may be obtained at suitable operating conditions such as; current density 100 A/m(2), operating time 12 min and initial pH 6.4. The corresponding electrode and energy consumptions during the electrolysis were found to be 1.8 kg Al/kg dye and 35 k Wh/kg dye.  相似文献   

3.
采用循环伏安和恒流充放电试验研究了电化学氧化改性石墨毡对VO2 /VO 2电对的催化活性,并利用XPS、FT-IR、SEM、BET对改性前后石墨毡碳纤维表面O/C、官能团变化、形貌和比表面积进行比较.结果表明,电化学处理后,石墨毡表面的O/C比例由0.085增加至0.15,增加的主要是COOH官能团.石墨毡碳纤维表面被刻蚀,比表面积有所增大.采用改性的石墨毡作为电极组装的全钒液流电池在50mA/cm2电流密度下,电压效率达75.99%,电流效率达96.79%,经多次循环性能稳定.电极活性的提高归因于碳纤维表面COOH官能团数目的增加和比表面积的增大.  相似文献   

4.
Treatment of textile wastewaters by electrocoagulation using iron and of aluminum electrode materials has been investigated in this paper. The effects of relevant wastewater characteristics such as conductivity and pH, and important process variables such as current density and operating time on the chemical oxygen demand (COD) and turbidity removal efficiencies have been explored. Furthermore, the electrode and energy consumptions for each electrode have been calculated. The results show that iron is superior to aluminum as sacrificial electrode material, from COD removal efficiency and energy consumption points.  相似文献   

5.
Electrochemical treatment of organic pollutants is a promising treatment technique for substances which are recalcitrant to biodegradation. Experiments were carried out to treat acid violet 12 dye house effluent using electrochemical technique for removal color and COD reduction covering wide range in operating conditions. Ruthenium/lead/tin oxide coated titanium and stainless steel were used as anode and cathode, respectively. The influence of effluent initial concentration, pH, supporting electrolyte and the electrode material on rate of degradation has been critically examined. The results indicate that the electrochemical method can be used to treat dye house effluents.  相似文献   

6.
In this paper, treatment of leachate by electrocoagulation (EC) has been investigated in a batch process. The sample of leachate was supplied from Odayeri Landfill Site in Istanbul. Firstly, EC was compared with classical chemical coagulation (CC) process via COD removal. The first comparison results with 348 A/m2 current density showed that EC process has higher treatment performance than CC process. Secondly, effects of process variables such as electrode material, current density (from 348 to 631 A/m2), pH, treatment cost, and operating time for EC process are investigated on COD and NH4-N removal efficiencies. The appropriate electrode type search for EC provided that aluminum supplies more COD removal (56%) than iron electrode (35%) at the end of the 30 min operating time. Finally, EC experiments were also continued to determine the efficiency of ammonia removal, and the effects of current density, mixing, and aeration. All the findings of the study revealed that treatment of leachate by EC can be used as a step of a joint treatment.  相似文献   

7.
2D nanosheets have been widely explored as electrode materials owing to their extraordinarily high electrochemical activity and fast solid-state diffusion. However, the scalable electrode fabrication based on this type of material usually suffers from severe performance losses due to restricted ion-transport kinetics in a large thickness. Here, a novel strategy based on evaporation-induced assembly to enable directional ion transport via forming vertically aligned nanosheets is reported. The orientational ordering is achieved by a rapid evaporation of mixed solvents during the electrode fabrication process. Compared with conventional drop-cast electrodes, which exhibit a random arrangement of the nanosheets and obvious decrease of rate performance with increasing thickness, the electrode based on the vertically aligned nanosheets is able to retain the original high rate capability even at high mass loadings and electrode thickness. Combined electrochemical and structural characterization reveals the electrode composed of orientation-controlled nanosheets to possess lower charge-transfer resistances, leading to more complete phase transformation in the active material.  相似文献   

8.
The cyclic plastic straining electrode technique has been used to investigate the transient electrochemical behaviour of Fe-26Cr1Mo stainless steel in 1M H2SO4 solution at a passive potential.The influence of plastic strain amplitude and plastic strain rate on the dissolution current response was analysed. The experimental results showed that the transient current was dependent on the competitive process of the surface film rupture and repassivation of the new surface. The high plastic strain amplitude and the high plastic strain rate caused a change of electrochemical activity of specimen surface. In the condition of low strain amplitude and strain rate, the characteristics of current response was mainly relative tp the process of new surface repassivation.The competition kinetics has been analysed through the comparison of plastic strain rate and repassivating rate  相似文献   

9.
Herein, macroporous carbon sheets (MCS) was synthesized by a re-assembly engineering. In this process, surfactant is combined with oligomeric resin to form micelles, which are re-assembled on the pre-prepared hybrid sheet through hydrogen bonding and electrostatic action, resulting in the reconstruction of relatively regular macropores on the sheet. The obtained MCS maintains the morphology of nanosheet with obvious circular macropores, high specific surface area and pore volume, which improves the charge transfer efficiency and is favorable electrochemical energy storage. As the electrode material for a supercapacitor, the MCS exhibits a high specific capacitance, excellent rate performance and long-term stability, which make the MCS an ideal electrode material for electrochemical energy storage.  相似文献   

10.
以硝酸钴为钴源,六次甲基四胺为沉淀剂,通过水热法在棉花基碳纤维基底上原位生长氢氧化钴。借助扫描电镜、X射线衍射和红外光谱等对材料的形貌和结构进行表征。采用循环伏安、恒电流充放电及交流阻抗等对材料的电化学性能进行研究。X射线衍射和扫描电镜测试结果表明,在碳纤维基底上原位生长的氢氧化钴呈花瓣状、α型。电化学性能测试表明,当电流密度为1 A/g时,所得花瓣状氢氧化钴的比电容为650 F/g;当电流密度增大至10 A/g时,仍保留67%的初始比电容值。以上结果表明,在碳纤维基底上原位生长形成的花瓣状氢氧化钴具有优异的电化学性能,原因在于碳纤维基底原位生长有助于提高氢氧化钴的分散性,形成纳米片状花瓣结构,进而显著改善其储能性能。  相似文献   

11.
采用化学镀的方法在石墨化中间相炭微球的表面镀覆金属镍,采用扫描电镜对镀覆后的炭微球进行了表面分析,采用X-射线衍射的方法对镀镍炭微球进行了物相分析,将镀覆后的中间相炭微球用于锂离子电池负极材料,并进行了不同倍率的充放电分析及交流阻抗研究。结果表明,在不使用活化剂和敏化剂的情况下,金属镍仍然能够沉积在炭微球的表面;炭微球的大电流放电性能大大提高,在2C放电电流下的放电容量提高了23%,镀镍后交换电流密度增大并且SEI膜电阻减小,炭微球的反应活性大大提高。  相似文献   

12.
In the present research work, an extensive experimental study of air-assisted rotary electrical discharge machining (AAEDM) of high chromium, high carbon die steel has been made. Investigations have been performed to study the process factor effect namely pulse-on time, discharge current, duty cycle, tool rotation, and air pressure on material removal rate (MRR) and electrode wear ratio (EWR). A comparative analysis of solid rotary tool electrode electrical discharge machining (REDM) and AAEDM has been presented. It was found that a high MRR and low EWR occurred in AAEDM as compared to the REDM process, under the same processing conditions. Use of a multi-hole tool provided better circulation of dielectric in the discharge gap, thus it improved the flushing efficiency of the process. The results showed that the application of compressed air has a favorable influence on MRR and EWR.  相似文献   

13.
Bio‐inspired actuation materials, also called artificial muscles, have attracted great attention in recent decades for their potential application in intelligent robots, biomedical devices, and micro‐electro‐mechanical systems. Among them, ionic polymer metal composite (IPMC) actuator has been intensively studied for their impressive high‐strain under low voltage stimulation and air‐working capability. A typical IPMC actuator is composed of one ion‐conductive electrolyte membrane laminated by two electron‐conductive metal electrode membranes, which can bend back and forth due to the electrode expansion and contraction induced by ion motion under alternating applied voltage. As its actuation performance is mainly dominated by electrochemical and electromechanical process of the electrode layer, the electrode material and structure become to be more crucial to higher performance. The recent discovery of one dimensional carbon nanotube and two dimensional graphene has created a revolution in functional nanomaterials. Their unique structures render them intriguing electrical and mechanical properties, which makes them ideal flexible electrode materials for IPMC actuators in stead of conventional metal electrodes. Currently although the detailed effect caused by those carbon nanomaterial electrodes is not very clear, the presented outstanding actuation performance gives us tremendous motivation to meet the challenge in understanding the mechanism and thus developing more advanced actuator materials. Therefore, in this review IPMC actuators prepared with different kinds of carbon nanomaterials based electrodes or electrolytes are addressed. Key parameters which may generate important influence on actuation process are discussed in order to shed light on possible future research and application of the novel carbon nanomateials based bio‐inspired electrochemical actuators.  相似文献   

14.
通过流变相辅助高温固相碳热还原法及碳酸共沉淀法合成了LiFePO4/C复合材料及三元系锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2。将二者按一定比例经强力搅拌混合均匀,获得均匀的共混锂离子电池用正极材料。通过循环充放电测试、交流阻抗测试等研究了混合比例对混合材料电化学性能的影响。实验结果表明LiFePO4与LiNi1/3Co1/3Mn1/3O2通过混合,二者之间产生较强的协同作用,从而实现二者之间的优势互补。并且当混合比例为1∶2时,混合电极具有较好的低温性能、倍率性能及循环稳定性和较高的平均放电平台电压及比能量密度。  相似文献   

15.
Treatment of poultry slaughterhouse wastewaters by electrocoagulation   总被引:4,自引:0,他引:4  
Treatment of poultry slaughterhouse wastewater (PSW) by electrocoagulation (EC) has been investigated batchwise in this paper. Effects of the process variables such as medium pH, electrode material, current density, and operating time are investigated on chemical oxygen demand (COD) and oil-grease removal efficiencies, electrical energy consumption, and sacrificial electrode consumption. The highest COD removal efficiency is reached with aluminum as 93%, and maximum oil-grease removal is obtained with iron electrodes as 98%. Combined use of both electrode materials in the EC unit may yield high process performances with respect to both COD and oil-grease removals. Further work needs to be carried out at pilot scale to assess the technical end economic feasibility of the process.  相似文献   

16.
This study investigates the influence of variables on the removal efficiency of solution containing 4-NP (4-nitrophenol) by D. C. electrocoagulation (EC). The efficiency of different electrode connections and materials (steel 310, Fe, Al, graphite and steel 304) for 4-NP removal is compared. Current density, time of electrolysis, interelectrode distance, supporting electrolyte concentration and stirring rate of the solution were the variables that mostly influenced the 4-NP removal. Initially, a simple electrochemical cell was prepared with an anode and a cathode. Then the effect of each variable was studied separately using aqueous 4-NP in a batch mode. For a solution of 20 mg/L 4-NP+300 mg/L NaCl with chemical oxygen demand (COD) of approximately 40 mg O2/L, almost up to 99% 4-NP and 65% COD were removed, when the pH was about 9, time of electrolysis was approximately 10 min, current density was 100 A m(-2), interelctrode distance was 15 mm and stirring rate was 400 rpm. In the second series of experiments, the efficiency of EC cells with monopolar electrodes in series and parallel connections and an EC cell with bipolar electrodes was compared with that of a simple electrochemical cell. The best results obtained when steel 310 and Fe are used as anodes and employing Al and graphite as anodes would not be satisfactory. Also findings show that the types of sacrificial electrodes are not very significant in the removal of 4-NP. In the real wastewater obtained from Tabriz petrochemical plant 52% removal could be achieved after 10 min with using steel 310 as anode and steel 304 as cathode.  相似文献   

17.
通过热力学计算修正的MnSO_4-SO_4~(2-)-H_2O镀液体系平衡电势E0-pH图,明确了363K和Mn~(2+)浓度0.2mol·dm-3时MnO_2物相结构材料阳极电沉积有效pH值范围,通过对氧化物结构表征及电化学性能测试获得了pH值的影响规律。结果表明:pH值在0.33~3.4时,随着pH值增大,有利于MnO_2物相结构Mn-Mo氧化物的有效析出,但pH值增大虽可提高阳极电沉积效率,却造成镀层质量变差,电催化性能明显劣化,镀液pH=0.5时获得的Mn-Mo氧化物具有优异的镀层质量和高的电催化性能。原因分析表明,该现象主要与氧化物制备过程中析氧反应的竞争密切相关:pH值较小时,竞争析氧反应造成固液界面搅动,抑制氧化物枝晶生长,同时使扩散层减薄,促进氧化物在电极微观表面各处更多形核,细化晶粒,从而提高氧化物的电催化性能。  相似文献   

18.
A new approach for promoting ferric reduction efficiency using a different electrochemical cell and the photoelectro-Fenton process has been developed. The use of UVA light and electric current as electron donors can efficiently initiate the Fenton reaction. Benzene sulfonic acid (BSA) was the target compound in this study. The parameters investigated to evaluate the reactor design include the electrode working area, electrode distance, energy consumption. Furthermore, the study also contains the intermediates and the mineralization efficiency of electrolysis, Fenton, electro-Fenton and photoelectro-Fenton process. Oxalic acid, the major intermediate of aromatic compound degradation, can complex with ferric ions. Meanwhile, a double cathode reactor could increase the current efficiency by 7%, which would translate to greater ferrous production and a higher degradation rate. Although the current efficiency of an electrode distance 5.5 cm device is 19% higher than 3.0 cm, results show that after 2 h of electrolysis the electronic expense using an electrode gap of 5.5 cm is much higher than 3.0 cm. The final TOC removal efficiency was 46, 64 and 72% using the Fenton, electro-Fenton and photoelectron-Fenton processes, respectively.  相似文献   

19.
Sn基材料是目前高容量锂离子电池电极材料研究的热点,但循环性能较差阻碍了其大规模应用。以氧化石墨烯为载体,通过化学还原法在载体表面成功均匀负载<10 nm的Sn量子点,合成Sn量子点/石墨烯(SnQds/rGO)复合电极材料。结果表明,Sn质量分数为90wt%的SnQds/rGO复合材料具有良好的综合电化学性能,首次放电容量和库伦效率分别为939 mAh/g和66.6%,经过200次循环后容量可达621 mAh/g,容量保持率为66.1%。小尺寸的Sn量子点与石墨烯复合能够增强电极材料的结构稳定性和降低阻抗,改善电极材料的循环性能和倍率性能,但会导致首次库伦效率有所降低。   相似文献   

20.
In the current study, electrochemical machining of Inconel 825, a Ni-based super alloy, was carried out using tungsten as a tool electrode material and NaCl as electrolyte. The present investigation attaches particular emphasis on explaining the mechanism of material removal of Ni-based super alloys in the ECM process. The influence of various ECM parameters such as voltage (V), concentration (C), and tool feed (F) has been investigated on the evolution of the surface morphology of Inconel 825 after ECM. Different performance measures in ECM such as material removal rate (MRR), surface roughness (SR), and radial overcut (ROC) have been measured. Grey relational analysis that uses grey relational grade as performance index has been adopted to simultaneously optimize multiple performance characteristics and determine optimal combination of ECM parameters. Moreover, principal component analysis is utilized to determine the weighting values corresponding to various output responses so that their relative importance can be adequately expressed. Optimal condition was found to be V = 16 V, C = 45 g/L, and F = 0.3 mm/min. Confirmation test was further performed to authenticate the approach applied for determining the optimal conditions that resulted in MRR of 20.867 mm3/min, SR of 0.156 µm, and ROC of 0.0697 mm, which were superior to those corresponding to all previous experimental runs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号