首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
根据P91材料高温等时应力应变本构关系,对高温含内局部减薄缺陷弯管的蠕变极限载荷进行了研究。研究表明,高温蠕变极限载荷在蠕变初期急剧下降,之后下降趋缓,该现象反映了高温下材料蠕变劣化过程。不同应变准则下蠕变极限载荷变化规律一致。根据有限元计算结果,提出了与蠕变时间无关的蠕变极限载荷计算方法,得到了含内局部减薄缺陷高温弯管的安全评定方法。  相似文献   

2.
含多局部减薄缺陷压力管道的安全评定方法讨论   总被引:2,自引:0,他引:2  
彭剑  周昌玉  薛吉林  代巧 《压力容器》2010,27(5):21-25,9
局部减薄是压力管道常见的一种体积型缺陷,在管道的服役过程中不仅会出现单个局部减薄缺陷,甚至会有多个局部减薄缺陷。通过有限元方法模拟内压作用下含双局部减薄缺陷管道获得其极限载荷,讨论了在不同的轴向和环向排列方式以及不同的局部减薄相对深度下,两局部减薄缺陷间的距离对压力管道极限载荷影响程度的差异。然后对所计算模型应用API 579-1 ASMEFFS-1—2007《适合服役》与GB/T19624—2004《在用含缺陷压力容器安全评定》中对多局部减薄(凹坑)处理方法进行评定,并与有限元得到的结果进行比较,发现两评定规范既存在着保守性,也存在着不安全性。最后对两评定规范所论述的方法进行修正,提出了一种新的用于内压作用下含多局部减薄缺陷管道的多局部减薄处理方法。  相似文献   

3.
张藜  柳曾典 《压力容器》2000,17(4):44-48
管道在使用中受介质腐蚀或冲蚀作用以及机械损伤会发生局部减薄 ,降低使用的安全性。对带有此类缺陷的直管已有评定规范和解析解 ,但对局部减薄弯头 ,国内外尚无评定规范且少有研究。本文在对局部减薄直管的极限载荷和无缺陷弯头的应力状态进行研究分析的基础上 ,提出了内压作用下局部减薄弯头极限载荷的计算式 ,并给出评定局部减薄弯头安全性的方法。用公式计算所得结果与有限元分析结果很一致。  相似文献   

4.
内压作用下弯管塑性极限载荷分析与试验研究   总被引:6,自引:2,他引:6  
对在内压作用下弯管的极限载荷进行研究。研究采用了有限元分析法、公式计算法和试验测定法。有限元分析结果表明,弯管的极限载荷随着弯管壁厚和弯曲半径的增加而增加,并与Goodall公式计算结果一致,最大误差为6.58%。这些结果得到了试验测试的证明。  相似文献   

5.
弯曲载荷作用下局部减薄管道的极限载荷分析   总被引:6,自引:1,他引:5  
本文采用弹塑性有限元分析,计算了纯弯曲载荷作用下局部减薄管道的极限弯矩。结果表明,管道的极限弯矩不仅与局部减薄的宽度有关而且与局部减薄的轴向长度也有关。当减薄长度大于某一临界值,有限元结果与不考虑减薄长度影响的净截面跨塌准则(Net-SectionCollapse)所得到的结果一致。所以,可以保守地用净截面跨塌准则来评定受弯曲载荷作用的局部减薄管道的极限承载能力。  相似文献   

6.
内压作用下局部减薄弯头的极限载荷的有限元分析   总被引:2,自引:0,他引:2  
张藜  柳曾典 《压力容器》2000,17(3):29-33
管道的弯头在使用中极易受到介质腐蚀或冲蚀作用而会发生局部减薄 ,降低使用安全性。对带有此类缺陷的直管已有评定方法 ,但此方法并不适用于弯头。本文采用有限元方法分析了内压作用下带有局部减薄弯头的极限载荷 ,所得出的结果可作为建立弯头局部减薄评定方法的基础  相似文献   

7.
含腐蚀缺陷弯管的极限载荷分析   总被引:1,自引:0,他引:1  
魏化中  黄柯  舒安庆 《机械》2009,36(3):26-27
应用有限元分析软件ANSYS对含腐蚀缺陷弯管在内压载荷作用下进行有限元分析。分析中考虑了材料非线性和几何非线性的影响,并根据Binfu失效准则,计算分析出弯管不同缺陷尺寸对弯管极限载荷的影响、弯管缺陷处的应力分布状态以及缺陷处随内压改变而变化的应力应变图。根据腐蚀区的应力应变图,对模型的塑性极限载荷压力进行预测,得出了缺陷尺寸对塑性极限载荷的影响及变化规律。  相似文献   

8.
含肩部减薄缺陷三通受内压时的塑性极限载荷分析与研究   总被引:1,自引:0,他引:1  
沈伟  孙亮  崔文勇 《压力容器》2003,20(11):10-15,50
利用ANSYS有限元分析软件对含肩部减薄缺陷焊制三通进行塑性极限内压的计算和分析,确定了影响三通塑性极限内压的主要因素,建立了覆盖常用三通几何特征参量和肩部三维减薄缺陷大小变化范围的塑性极限内压有限元解数据库,并拟合得到形式简单且具有较高精度的塑性极限内压工程估算公式。  相似文献   

9.
内压作用下局部减薄管道的极限载荷分析   总被引:7,自引:2,他引:5  
韩良浩 《压力容器》1998,(4):1-4,48
本文通过三维有限元求解了局部减薄管道的极限载荷,并与ASMEB31.G规范进行了比较。重点研究了局部减薄宽度对管道极限承载能力的影响,结果表明局部减薄宽度的影响不能忽略,在减薄宽度较大的情况下,ASMEB31.G可能会给出偏于危险的评定。  相似文献   

10.
进行了核电站90°弯管在内压和面内弯曲载荷作用下的棘轮效应试验,并采用数值方法研究了90°弯管的极限载荷、安定载荷和棘轮边界。利用理想弹塑性有限元分析,基于两倍弹性斜率准则和切线相交准则分别确定了90°弯管单独承受内压和弯曲载荷的极限载荷;利用线性匹配方法确定了90°弯管在单独内压和弯曲载荷以及两者共同作用下的极限载荷和安定载荷;利用Ohno-Wang模型,结合C-TDF弹塑性有限元分析方法和线性匹配方法分别确定了90°弯管的棘轮边界;最后,对弹塑性有限元方法和线性匹配法确定的棘轮边界进行了比较。结果表明:两倍弹性斜率准则、切线相交准则和线性匹配方法确定的极限载荷误差为10.78%,其中弹性迭代的线性匹配法能高效、快速地进行计算。比较C-TDF法和线性匹配法确定的棘轮边界,结果发现:当内压在20~35 MPa之间时,两种方法确定的棘轮边界吻合很好;当内压小于20 MPa时,两种方法的预测结果呈现不同的趋势。  相似文献   

11.
魏化中  陈文霞  舒安庆 《机械》2008,35(3):11-12,22
应用有限元分析软件ANSYS,对含点蚀缺陷的弯管在内压载荷作用下进行有限元分析,分析中考虑材料非线性和几何非线性,根据腐蚀区的载荷-应变图,对模型的塑性极限压力进行了预测,得出了缺陷尺寸对塑性极限载荷的影响及变化规律,并得到了一些对含缺陷弯管的安全评定有参考价值的结论.  相似文献   

12.
内压载荷作用下含缺陷弯头的塑性极限载荷有限元分析   总被引:1,自引:0,他引:1  
采用三维弹塑性有限元技术,对内压载荷作用下含纵向穿透裂纹弯头的塑性极限载荷进行了系统分析。结果表明,裂纹削弱系数(PL/PL0)与厚径比(t/rm)无关,在实际工程应用中可忽略厚径比对裂纹削弱系数的影响。裂纹对长半径弯头的塑性极限承载能力影响程度明显大于对短半径弯头的。  相似文献   

13.
弯头是管道系统中最薄弱、最容易失效的管件。研究含缺陷弯头的塑性承载能力在整个压力管道系统安全评定中占有重要地位。利用求取直管极限载荷的鼓胀系数法建立不考虑直管影响的含缺陷弯头的塑性极限载荷估算式。采用三维弹塑性有限元技术,对内压载荷作用下含纵向穿透裂纹弯头的塑性极限载荷进行系统分析。结果表明,裂纹削弱系数(PL/P LO)与厚径比(t/rm)无关,在实际工程应用中可忽略厚径比对裂纹削弱系数的影响。裂纹对长半径弯头的塑性极限承载能力影响程度明显大于对短半径弯头的。  相似文献   

14.
王波  郭应征 《工程与试验》2010,50(1):1-2,33
运用有限元分析软件ANSYS10·0对内拱内壁含球形凹坑缺陷弯管的塑性极限载荷进行了分析,得出了比较理想的结果。与相关研究成果做了对比,得出了缺陷尺寸一样时,缺陷所处位置的不同会导致弯管的塑性极限载荷不同的结论。  相似文献   

15.
建立了含缺陷管道失效的数值模型,采用非线性有限元方法对其极限载荷进行了研究,分析了局部减薄缺陷参数对管道极限载荷的影响,并将计算结果与API579准则的评价结果进行了对比,分析了二者产生差异的原因。研究结果表明,极限载荷随缺陷深度和缺陷长度的增加而呈明显下降趋势,但当缺陷长度达到一定值时,其继续增加对管道极限载荷的影响不再明显。缺陷长度较小时,有限元计算结果与API579准则给出的结果相吻合;缺陷深度和长度都较大时,API579准则并不适用。  相似文献   

16.
带径向接管的圆柱形容器开孔补强结构的极限承载能力主要与3个无量纲参数(开孔率d/D、壁厚比t/T和D/T)有关。为了能够快速地获得该结构的极限承载能力,运用正交试验设计方法,设计了64组不同参数的圆柱形容器模型,利用有限元分析软件ANSYS对各组模型进行模拟计算,求得了在接管纵向弯矩作用下各组模型的极限载荷,再由回归分析法得到了在接管纵向弯矩作用下带补强圈容器极限载荷的回归方程。最后通过试验和有限元计算两种方法进行了验证,证明了回归方程的结果是正确的,并具有足够的精度,可以用于工程设计中快速计算在接管纵向弯矩作用下该结构的极限承载能力。  相似文献   

17.
圆柱壳开孔接管结构极限载荷的参数化分析   总被引:1,自引:0,他引:1  
具有径向接管的圆柱壳结构的极限承载能力与三个无量纲参数:开孔率d/D、壁厚比t/T和D/T有关。运用正交试验设计方法,设计了64组不同参数的圆柱壳模型,利用有限元分析软件ANSYS对模型进行模拟,求得模型的极限载荷。由回归分析法得到了模型极限载荷的回归方程。通过分析与试验和有限元计算的验证,证明回归模型是正确的,指出参数化分析法在压力容器上应用是有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号