首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
运用计算流体力学方法,对PDC钻头超高压射流流场进行数值模拟研究,并对喷嘴进行设计。结果表明,超高压喷嘴自由淹没射流符合轴对称射流性质,流场与常规射流流场结构一致,分为初始段、过渡段和基本段;超高压喷嘴自由淹没射流存在等速核,等速核长度为7.5倍喷嘴直径;超高压射流喷距设计为4倍喷嘴直径,有利于提高超高压射流破岩能力。现场试验结果表明,超高压PDC钻头配合井下增压器使用可以大幅提高机械钻速。  相似文献   

2.
赵付国  徐依吉  冯云春  孙峰 《石油机械》2005,33(1):21-23,33
为了充分有效地利用井底水力能量,使水射流与切削齿联合作用破碎岩石,提高破岩效率,设计了超高压双流道PDC钻头。在不改变普通PDC钻头基本设计原理和方法的基础上,进行了该钻头超高压系统关键部件的设计包括高压合金管和定心夹具的材料和尺寸的设计;喷嘴结构和参数的设计,以及超高压流道的计算和设计。室内模拟试验表明(1)超高压喷嘴安装在钻头刀翼上能辅助PDC切削齿破岩;(2)定心夹具解决了高压合金管上部与增压器高压合金管的同心扶正和高压合金管在钻头中的固定问题,同时钻井液也能顺利下行到钻头。  相似文献   

3.
近年来,中国石油大学(北京)针对射流式井下增压器和超高压双流道PDC钻头先后开展了相关理论研究,并取得了突破性进展.综述了截止目前研究中重要的研究成果,包括射流式井下增压器增压原理和公式、射流换向元件水力结构特性(附壁特性和切换特性)、超高压双流道PDC超高压喷嘴结构设计、超高压射流辅助机械齿联合破岩机理,上述四项研究成果丰富和发展了超高压射流理论和PDC钻头超高压射流破岩机理理论,为射流式井下增压器今后的研究和优化奠定了重要的理论基础.  相似文献   

4.
《石油机械》2017,(6):91-95
为得到超高压喷嘴的最佳射流特性,提高磨料射流切割设备的作业效率,基于两相流理论研究了流体和磨料颗粒在喷嘴收缩段和圆柱段内加速的理论计算方法,同时利用计算流体力学软件FLUENT对喷嘴内外射流特性进行仿真分析,研究喷嘴内、外速度和压力场分布情况,并对比理论计算与仿真结果。在此基础上,研究收缩段角度和圆柱段长度对喷嘴内、外射流特性的影响,确定喷嘴内部最优结构尺寸范围。研究结果表明:对于入口直径8 mm、出口直径1 mm的喷嘴,圆柱段长度范围宜选取3035 mm,收缩角范围宜选取12°13°。所得结论可为超高压磨料射流喷嘴的设计及现场应用提供参考。  相似文献   

5.
高压水射流PDC钻头结构参数数值模拟研究   总被引:1,自引:1,他引:0  
以中硬细砂岩为岩石材料,应用动态有限元法对高压水射流PDC钻头参数做了数值模拟研究。得出如下结论:(1)高压射流入射角对不同岩层存在最优值,对于中硬地层细砂岩最优入射角为40°;(2)PDC钻头钻进中钻齿所受扭矩随作用半径增大成指数规律增长,在硬地层钻进钻齿前倾角为-15°时破岩效果最佳;(3)采用直径1.8mm的高压小喷嘴射流能显著改善PDC钻头钻齿受力,避免钻齿冲击破坏,延长钻头寿命;(4)高压水射流与机械齿联合破岩时,喷嘴与钻齿相对位置对破岩效果有显著影响,喷嘴处于钻头外锥时,可均化钻齿受力,提高破岩效率。  相似文献   

6.
为提高PDC钻头钻进水平段时的井底射流辅助破岩能力,开展了叶轮式旋转射流喷嘴的射流特性研究。利用k-ε双方程标准湍流模型,对叶轮式旋转射流流场进行了数值模拟,并采用旋流强度和流量系数评价了射流破岩能力。数值模拟结果表明,叶片扭曲角为115°~140°、直柱段无因次长度为0.6~0.8、收缩角为60°~70°时,流量系数和旋流强度可取得最佳值,射流破岩能力最强。根据不同喷距下的旋转射流破岩试验结果,分析了叶轮式旋转射流喷嘴的破岩特性,结果表明,同压降下叶轮式旋转射流破岩直径是普通直射流的近3倍,且喷距在7~11倍喷嘴出口直径时破岩直径最大。研究结果表明,叶轮式旋转射流喷嘴的破岩能力优于普通直射流喷嘴,且通过优化叶轮式旋转射流喷嘴几何参数可提高其破岩能力,加强井底清岩和辅助破岩效果,提高PDC钻头的破岩效率。   相似文献   

7.
《石油机械》2015,(11):39-43
粒子钻头喷嘴及内流道水力参数设计、冲蚀规律及防冲蚀和耐磨损研究对粒子冲击钻井技术的成败至关重要。通过理论分析、数值模拟及试验研究相结合的方法,设计了粒子钻井用射流喷嘴及流道结构,研究了粒子钻头内流道冲蚀特性,并提出了粒子钻头内流道防冲蚀和耐磨措施。研究结果表明,粒子钻头采用等径12 mm锥直型双喷嘴组合,内流道收敛段和加速直线段长度分别为37和60 mm,喷嘴入口直径25 mm,收缩角半角10°;粒子钻头内流道由于过流断面突变存在多个低压漩涡区,可能导致内流道空蚀磨损,而冲蚀磨损主要在内流道底部,可通过倒角直径变大和内流道镀镍表面强化处理措施解决;钻头内流道最大冲蚀磨损率不到1%,冲蚀磨损较轻,说明内流道结构设计合理。  相似文献   

8.
井下螺杆动力增压系统是从一种全新的原理出发,利用现有成熟技术,研制出一套将螺杆钻具作为动力的井下增压装置,产生超高压水射流,实现水力机械联合破岩,提高钻井效率.增压装置主要由动力单元、动力转换单元、固液分离单元、增压单元以及高压流道单元组成,动力单元将钻柱内的钻井液压能转化为转子的旋转扭矩,由现场用螺杆钻具改进而成;动力转换单元将转子的旋转运动转换为柱塞的轴向往复运动,设计关键是两个斜置圆柱凸轮槽的轨迹;固液分离单元用以过滤进入增压缸的钻井液,防止增压缸阀门阻塞;增压单元通过柱塞的往复运动来压缩增压缸内的钻井液实现增压;高压流道单元将增压后的钻井液输送给钻头上的超高压喷嘴,改进高压合金管的连接方式,提高密封效果.该装置流道简单,制造容易,并且性能稳定、强度高、使用寿命长,能满足现场使用的需要,为新型井下增压器的设计奠定了基础.  相似文献   

9.
为了提高深井超深井的机械钻速,降低钻井成本,综合利用脉冲射流和超高压射流钻井的优点,设计了脉冲式井下增压钻井装置。介绍了其结构和工作原理,根据不同钻井状况有针对性地设计关键参数。根据研究,确定高压活塞作用力取为钻压的35%,PDC钻头钻井时高压活塞直径取30 mm,牙轮钻头钻井时高压活塞直径取35 mm,活塞行程根据钻头在井下振动的位移确定,取为25 mm,活塞频率为4和6 Hz,计算得到高压流体排量。由于脉冲式井下增压钻井装置内、外压差作用在传动轴上端面,具有水力加压作用,所以针对不同钻头钻井情况,进行水力加压作用力计算。  相似文献   

10.
江钻股份公司在确保产品质量、优化售后服务的同时,结合具体的钻井用途狠抓新产品的开发研制,取得了显著的成果。在喷射钻井方面,为了提高钻头水功率和减小钻头流道的冲蚀,公司开发出了新型低喷嘴座双流道钻头,这种钻头的优点包括:(1)在钻头流道中心设计有导流块,形成分流道曲面,可使钻井液强制性地分流到分流道中;(2)将钻头流道设计为两个分流道的双喷嘴座结构,以加大钻井液上返空间和井底漫流速度;(3)将喷嘴座台肩设计为斜角形,且喷嘴座入口直径稍小于喷嘴直径,从而消除了常规钻头喷嘴座台肩处容易发生环状冲蚀的问题。经现场试验证明,低…  相似文献   

11.
油气钻井工程实践表明,利用高压射流辅助破岩是提高深井机械钻速的有效途径,而井下增压技术是一种产生高压射流的方法,井下增压系统装置的稳定性、可靠性是该技术工业应用的关键。为此,围绕井下增压系统配套的关键工具进行了研究与实验:①优选的螺杆增压器可将螺杆钻具输出的旋转运动转换为轴向往复运动,达到对部分钻井液实施增压的目的;②依据室内实验获得的不同喷距、射流角度下高压流体对岩石的冲蚀数据,研制了与螺杆增压器适配的超高压双流道钻头;③在地面采用清水作为试验介质进行了测试,高压喷嘴直径1.5 mm,泵压为4 MPa,排量18 L/s,地面测试期间高压喷嘴出口明显可见脉冲高压射流,井下螺杆增压装置运行稳定。在5口井上完成钻井总进尺1 015 m、纯钻进时间206 h,与邻井相比平均机械钻速提高了51.4%。试验结果表明,该井下增压系统在钻井作业中提速效果明显、设计合理、工作可靠。  相似文献   

12.
Radial drilling technology,of which the jet bit is the key device,is a research focus in the field of oil drilling and production.This paper establishes mechanical equations for jet bits and analyzes the hydroseal of backward jets in bottom holes.Meanwhile this paper establishes a mechanical equation for a high pressure hose and analyzes the axial force distribution.Laboratory experiments indicate that the flow rate,the angle between the backward nozzle axis and the jet bit axis,and the hole diameter are the major influencing factors;the generation of the pulling force is mainly due to the inlet pressure of the jet bit;the backward jets can significantly increase not only the pulling force but also the stability of jet bits.The pulling force would reach 8,376 N under experimental conditions,which can steadily pull the high-pressure hose forward.  相似文献   

13.
通过转化井下钻柱振动能量来增加井底钻井液喷射压力是提高钻井速度的重要途径,而现有技术还未能充分合理地利用钻柱振动能量。为此,基于井下钻柱振动能量的利用理论,提出了钻井液井下增压、增排量的井底高压喷射钻井理念,设计出了井底高压喷射钻井装置,并对其进行了数值仿真研究。结果表明:(1)井底高压喷射钻井装置可以将钻柱振动能量有效转化给井底钻井液从而实现井下高压喷射钻井;(2)井底高压喷射钻井装置增加了喷嘴钻井液过流流量,在?215.9 mm井眼中,其输出的钻井液流量可以提高5 L/s;(3)增大了钻井液喷射压力,喷嘴处钻井液脉冲压力最高达到11.3 MPa;(4)深井内井底高压喷射钻井装置应用效果比上部地层更加显著。结论认为,井底高压喷射钻井装置为高压喷射钻井技术的实现提供了一种新的手段,可以解决现有高压喷射钻井技术设备费用昂贵、安全性差、适用范围有限的问题。  相似文献   

14.
为了将不同射流方式应用于PDC钻头以改变井底流场,并给钻头提供设计依据,通过数值模拟和室内试验分析了反向射流对井底流场的影响规律,并对旋转射流的破岩能力进行了评价。结果表明:PDC钻头加装反向射流喷嘴之后,钻头破岩部位压力降低,并且压降随着反向射流喷嘴距钻头底部距离的增大而减小,随反向射流流量的增大而增大,上部钻井液液柱压力对压降影响不大;在相同压降或排量下,旋转射流较普通直射流有更好的破岩能力。根据试验结论研制出了反向射流与旋转射流组合的PDC钻头,并在坨747井进行现场试验。结果表明,坨747井采用组合射流PDC钻头后,与采用普通PDC钻头的邻井相比,钻速提高40%以上。这表明,将反向射流和旋转射流组合应用于PDC钻头,可以明显提高机械钻速。   相似文献   

15.
为了提高在某些硬岩和研磨性地层钻进效率,减少井底岩屑堆积,基于传统PDC( 聚晶金刚石复合片)钻头进行了结构调整,无中心喷嘴,设置三个轴向夹角为20°的斜喷嘴孔, 改变六刀翼分布。利用数值模拟分析方法,采用SST k-ω模型,对PDC钻头射流流场特性进行研究,分别对井底、喷嘴、刀翼表面射流流速和压力梯度进行了数值分析。在此基础上,对其水利参数再次优化,并对不同参数的PDC 钻头井底流场进行分析对比。 结果表明,钻头喷嘴直径越小,直射点速度越大,越利于破岩,但水力能量过于集中,高速漫流无法充分覆盖井底,不利于清洗岩屑;轴向夹角度数在20°~30°时,钻头喷嘴轴向夹角度数变大,直射点速度变化不大,但钻头肩部涡旋减少,上返区域速度提高,有利于岩屑快速排出井底,刀翼表面不易产生泥包;当钻头喷嘴直径在24 ~ 28 mm,喷嘴轴向夹角度数在25° ~ 30°时,该PDC钻头水力情况最佳。  相似文献   

16.
根据实际PDC钻头结构.建立了2个不同孔弪四喷嘴PDC钻头模型,研究了喷嘴孔径对井底漫流特性的影响及漫流层高度和最大漫流速度。分析了流场的总体特点.得出了喷嘴孔径对PDC钻头井底流场的各种影响。  相似文献   

17.
况雨春  罗金武  王利  王芳  张亮  李舒  杨迎新 《石油学报》2017,38(9):1073-1081
常规PDC钻头切削产生的粉状或片状岩屑颗粒不便于地质录井,对此提出了一种新型抽吸式微取心PDC钻头。该抽吸式微取心PDC钻头取消了常规PDC钻头心部的主切削齿,设置特殊的水力结构,使钻头心部在钻进过程中形成一定直径的竖直岩心并适时折断,通过负压抽吸作用将断的微岩心从钻头体内部流道带离井底。结合破岩仿真与液固两相流理论,研究了在岩心、岩屑与钻井液混合流动的流场中,射流喷嘴直径的大小对取心通道中抽吸效果的影响规律。数值模拟结果表明,对于拟定条件下钻头直径为215.9 mm的微取心PDC钻头,当射流喷嘴直径为8 mm时,从排心孔排出的岩心、岩屑和钻井液的质量较高,其负压腔的抽吸效果较好。室内及现场试验表明:采集的岩心以柱状为主,岩心完整性和采集率高;在磨溪111井位嘉陵江组二段3亚段至长兴组上部地层,获总进尺805.65 m,平均机械钻速为4.57 m/h,最高机械钻速可达7.4 m/h;该钻头在嘉陵江组二段3亚段至飞仙关组一段(总进尺742 m)的机械钻速比该区块同层位的其他常规PDC钻头高出了50%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号