首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
以汽车发罩外板为例,将压边力、冲压速度、凹模与板料间摩擦系数和凸模与板料间摩擦系数作为工艺参数变量,以拉延工序最大减薄率和修边工序后最大回弹量为优化目标,应用中心复合试验设计(CCD)及有限元模拟获取样本数据。由试验数据建立二阶响应面模型,结合非支配排序遗传算法(NSGA-Ⅱ)实现多目标优化,得到优化的工艺参数组合为:压边力为1145kN,冲压速度为3480mm·s~(-1),凹模与板料摩擦系数为0.106,凸模与板料摩擦系数为0.13。基于优化的工艺参数指导模面回弹补偿分析并试模,研究结果表明,发罩外板实际冲压成形质量较好。  相似文献   

2.
以某车型前门外板为例,根据AutoForm初步数值模拟结果,将成形最大减薄率和修边后最大回弹量作为优化目标,以拉延R角半径、拉延筋阻力、摩擦系数、压边力、冲压速度为自变量,设计5因素4水平的正交试验。采用灰色关联分析法,对正交试验数据进行处理,计算各工艺参数对目标函数的关联系数和关联度,得到多目标优化的最优工艺参数组合:拉延R角半径为27 mm、拉延筋阻力为175 N·mm~(-1)、摩擦系数为0.13、压边力为1450 kN、冲压速度为2500 m·s~(-1)。使用优化过后的成形工艺参数在AutoForm中进行再次模拟,结果显示成形最大减薄率和修边后最大回弹量都得到合理控制。将优化后的工艺参数用于指导工艺设计和模面回弹补偿,然后进行模具结构设计、制造和试模,实际结果表明,前门外板冲压成形质量合格。  相似文献   

3.
以某型号汽车天窗加强环为研究对象,通过对其结构进行分析,初步设计冲压工艺为拉延→修边、冲孔→修边、冲孔→翻边,初选压边力、摩擦系数、拉延筋阻力系数、工艺补充等参数,并利用Autoform进行数值模拟。根据模拟结果中所出现的起皱、减薄、开裂等缺陷,并结合产品结构,调整压边力、摩擦系数以及拉延工艺以得到符合实际生产的工艺参数、冲压工艺。最终确定的工艺参数为:压边力为2400 kN、凸凹模间隙为1.2 mm、摩擦系数为0.15;冲压工艺为:拉延→修边、冲孔→修边、冲孔→翻遍、整形→冲孔。根据确定的工艺参数进行成形实验,得到了合格的零件,有效地降低了模具的设计成本。  相似文献   

4.
基于正交试验法应用有限元数值模拟对双相不锈钢大型封头成形的工艺参数进行了系统性的多目标优化研究,利用直观分析法和排队评分法获取了凸凹模间隙、凹模入口圆角半径、拉延筋高度、拉延筋形状、拉延筋位置对成形质量、减薄率、回弹量的影响主次,得到了最优工艺参数组合,并对优化结果进行了生产验证。结果表明:采用凸凹模间隙11 mm,凹模入口圆角半径40 mm,位置在中间高度为20 mm的矩形拉延筋得到的封头无起皱、鼓包等成形缺陷,且封头最小壁厚为9.33 mm,最大壁厚为11.19 mm,回弹量较小。生产实际与模拟结果基本一致。采用该组工艺参数能提高双相不锈钢封头的成形质量。  相似文献   

5.
运用CAE分析软件对前翼板支架成形过程进行了仿真分析,预测了拉延成形过程中的起皱和拉裂等缺陷,模拟分析得出前翼板支架起皱分析图、厚度变化图和成形极限图,并依此来判定其成形效果。运用正交试验法研究了压边力、冲压速度、摩擦因数、模具间隙和拉延筋阻力系数5个工艺参数对成形结果的影响,获得了工艺参数优化组合为:压边力1800 kN、冲压速度2000 mm·s-1、摩擦因数0.16、模具间隙1.1t、拉延筋阻力系数0.5,优化后产品最大减薄率为20.4%,最大增厚率为7.5%,符合产品要求。利用UG WAVE技术,采用自顶向下的装配建模,快速设计出了前翼板支架拉延模具结构,该技术符合参数化产品设计过程和规则,使模具设计和修改更加便利。最后在试模阶段对前期工艺方案进行了验证,得到的试模结果和仿真分析结果基本保持一致,产品最大减薄率为21.3%,最大增厚率为8.1%,均满足成形要求。  相似文献   

6.
以某车型的前隔板为研究对象,通过三维建模软件设计工艺补充面和压料面,借助有限软件对其成形工序进行模拟分析.将数值模拟和正交试验设计相结合,采用多目标优化方法优化前隔板零件成形工序的压边力和各段拉延筋阻力系数,得到优化的参数组合为压边力F=500 kN,拉延筋阻力系数K1=0.4,K2=0.4,K3=0.3,K4 =0.6.极差分析表明,对最大减薄率影响最大的因素为拉延筋阻力系数K2,对最大增厚率影响最大的因素为拉延筋阻力系数K3.实验结果表明,采用优化后的参数得到实际成形零件无拉裂缺陷且零件厚度满足要求.  相似文献   

7.
基于综合设计的覆盖件冲压工艺优化   总被引:3,自引:2,他引:1  
针对正交实验设计方法的不足,提出结合正交实验设计和响应面模型(等径设计)的综合设计方法.以汽车行李箱盖的冲压拉延过程为例,进行冲压工艺优化设计.选择拉延筋、摩擦系数(凹模与板料、凸模与板料)、压边力、凸凹模间隙、冲压速度为实验的6因素,每个因素选取3水平,以最小减薄率为质量评价标准,进行综合设计,获得了各因素对最大减薄率的影响规律,得到了最优的关键工艺参数.并利用最优值进行了数值模拟仿真,验证了方法的可行性与实用性.  相似文献   

8.
针对U形件弯曲回弹问题,在Abaqus软件中建立6061铝合金薄板U形件拉延成形二维有限元模型,使用Numisheet’ 2011会议回弹测量方法和成形极限图缺陷判据,研究U形件成形过程中单工艺参数对回弹量的影响,通过L_9(3~4)正交试验获取U形件回弹控制最优工艺参数组合。结果表明:不改变其他成形工艺参数,U形件回弹量随着凸、凹模圆角半径或拉延深度的加大,总体呈上升趋势,随凸、凹模间隙值的减小总体呈下降趋势;U形件回弹量随"凸模-板料"摩擦因数的增大而增大,随"凹模、压边圈-板料"摩擦因数或压边力的增大而减小;成形工艺参数影响U形件回弹量的主次顺序依次为"凹模、压边圈-板料"摩擦因数、"凸模-板料"摩擦因数、凸、凹模间隙值、压边力,以优水平工艺参数组合A_2B_3C_1D_3进行成形模拟,U形件法兰端部最大位移偏移量为0.84 mm,回弹控制效果明显。  相似文献   

9.
基于冲压成形仿真软件Autoform对某车型后背门外板冲压过程进行模拟仿真,分析了压边力、润滑、料厚及模具间隙等因素对拉延筋圆角减薄率的影响,并基于分析结果解决了拉延筋圆角冲压开裂的问题。结果显示,零件减薄率随着压边力的增加而增加,但拉延筋圆角处减薄率随着压边力的增加而减小,压边力在1400~2000 kN之间时,拉延筋圆角处减薄率可保持在19.1%之内;拉延筋圆角处减薄率随着摩擦因数的减小而增加,当摩擦因数为0.11时减薄率达到19.6%;料厚由0.63 mm增加至0.67 mm时,拉延筋圆角处减薄率由16.0%减小至13.4%;模具间隙对拉延筋圆角开裂的影响最为显著,当模具间隙为0.02 mm时,减薄率达到25.5%。故适当提升压边力和摩擦因数、增加料厚、减小模具间隙均可降低拉延筋圆角处减薄率。  相似文献   

10.
发动机罩外板结构简单,表面平直,曲率半径大,整体高度低。如果对外板拉深成形时的毛坯形状与尺寸、冲压方向与速度、拉延筋布局与结构以及压边力大小、凸凹模间隙、摩擦润滑等工艺因素的选择或控制不当,则容易导致其卸载后的回弹量增大。文章以eta/DYNAFORM软件为计算平台,利用正交实验法,对某轿车发动机罩外板的拉深回弹现象进行了数值分析,并在此基础上确定了控制回弹的拉深工艺参数和模具结构参数。实验结果表明,该外板零件的拉深回弹呈扭曲倾向,即存在一部分区域上翘,而另一部分区域下陷,其中下陷趋势较上翘明显。根据数值模拟分析得到满足外板技术要求的最优拉深工艺参数和模具结构参数组合为:压边力900kN,虚拟冲压速度1000mm/s(相当于实际冲压速度的10倍),拉延筋高度6mm,凸凹模间隙0.8mm。  相似文献   

11.
以某型号微型面包车的前地板拉延成形过程为例,对材料特性进行分析,并建立数学建模后,进行冲压模拟分析。选取冲压成形工艺参数中的压边力、凸凹模间隙和拉延筋高度3个因数进行正交试验分析,以坯料的局部最小厚度为优化目标值,以防止产生拉裂现象。冲压数值模拟分析表明,压边力最显著,拉延筋高度为其次,凸凹模间隙为最次。为保证前地板冲压成形的均匀性,最佳工艺参数为压边力950 k N、凸凹模间隙0.84 mm、拉延筋高度6 mm,并对前地板零件进行验证。验证结果表明,成形表面较为光顺,且无裂纹,虽在曲率变化较大的区域有少量褶皱外,但冲压质量完全符合前地板设计要求。  相似文献   

12.
冲压成形中合理的拉延筋、压边力是减少起皱、拉裂、回弹、拉深不足等的有效措施。以某车型汽车A柱加强板为对象,应用冲压仿真软件Dynaform,研究拉延筋、压边力对冲压件成形质量的影响,详细分析了模面有拉延筋、无拉延筋和不同压边力条件下工件的Z向最大回弹量、最大材料流入量、最大减薄量、最大增厚量和成形极限。分析结果表明:使用拉延筋后,工件的回弹缺陷得到控制,工件的最大增厚率下降,减小了起皱缺陷;压边力对工件成形质量有较大影响,压边力太大工件会出现破裂缺陷,压边力为100 k N是A柱下加强板最优的工艺参数。冲压试验结果与模拟结果吻合较好。  相似文献   

13.
针对某车型中通道零件易出现拉裂和起皱等缺陷,提出通过工艺分析和工艺补充面设计来得到零件的成形工艺流程和工艺补偿面。借助AutoForm软件,建立中通道的拉延成形工序的有限元模型,通过初步模拟,确定以压边力、摩擦系数和拉延筋阻力系数作为试验因素,通过正交试验设计,以优化拉延成形工艺参数。试验中,以最大减薄率和起皱趋势评价函数作为优化的目标函数,并采用多目标优化方法,获得最优的工艺参数组合。实际试模中采用优化后的参数进行试验,得到中通道的产品区域无拉裂和起皱缺陷。  相似文献   

14.
以某汽车座椅撑板为研究对象,采用Autoform有限元软件建立拉延过程有限元模型,对其成形和回弹进行分析。针对拉延成形过程中回弹量过大的缺陷,设计正交试验,选取压边力、摩擦系数、冲压速度和凸凹模间隙4个重要工艺参数作为因素,研究工艺参数对回弹量的影响规律,得到最优的工艺参数组合为:压边力250 k N,摩擦系数0.08,凸凹模间隙1.2 mm,冲压速度4000 mm·s~(-1)。采用优化参数组合进行试模,试验结果与数值模拟结果吻合较好,工件成形效果完全符合设计要求。  相似文献   

15.
在接线盒的成形过程中,为了解不同因素对接线盒成形质量的影响,获得最佳的成形参数,通过Dynaform建立有限元模型,结合Design-Expert软件设计响应面试验,通过试验获得最大减薄率和最大增厚率的多项式回归响应模型,进一步得出虚拟压边力、模具间隙和摩擦因数对工件最大减薄率和最大增厚率的影响程度,利用带精英策略的非支配排序遗传算法(NSGA-Ⅱ)对最大减薄率和最大增厚率进行优化求解,得到最优工艺参数为:压边力为21400 N,模具间隙为1.25 mm,摩擦因数为0.08。最后在Dynaform中进行仿真试验,并结合实际生产进行验证。研究结果为接线盒的实际生产提供了理论基础。  相似文献   

16.
以某汽车中立柱内板为研究对象,选取摩擦系数、冲压速度、压边力和凸凹模间隙为设计变量,采用最优拉丁超立方实验设计选取了30组实验方案,使用Autoform R6软件对拉延后的最大增厚率和最大减薄率进行有限元模拟。利用模拟结果建立最大增厚率和最大减薄率两个目标值的4阶响应面近似模型,并分析了影响因素对目标值的影响。多目标优化后得到的摩擦系数为0. 17、冲压速度为3500 mm·s-1、压边力为450 k N、凸凹模间隙为0. 55 mm,此时的最大增厚率为0. 95%、最大减薄率为10. 65%。使用优化后的工艺参数进行模拟,得到的最大增厚率和最大减薄率的模拟值分别为0. 96%和12. 20%,证明了多目标优化结果的有效性。根据优化后的工艺参数组合进行零件试生产,可以生产出无起皱开裂且满足要求的汽车中立柱内板拉延件,提高了零件从设计至生产的效率。  相似文献   

17.
以某主机厂轻型客车左中侧围内板加强板为研究对象,对其结构特征进行分析,设计的冲压工序为拉延→修边、冲孔→修边、冲孔→整形翻边。在初步设计压边力、拉延筋、工艺补充面等参数的基础上,利用Autoform对其进行有限元模拟,通过分析模拟结果中的减薄率分布图、增厚图和成形极限图FLD,确定了压边力大小为800 kN,并调整工艺补充面,降低工艺补充面的高度差,将拉延筋设定为以零件边界为基础的整圈拉延筋,且拉延筋方向与材料流动方向相垂直,外形应平滑以适应零件凹口形状。最终采用优化后的工艺参数,指导试生产,得到合格零件,从而验证了有限元模拟分析的正确性。  相似文献   

18.
以某型号汽车座椅外侧板为例,采用Auto Form软件对座椅外侧板拉延成形过程进行模拟分析,并根据分析结果预测出拉延过程中的拉裂风险。通过调整零件的圆角半径和修改局部结构,消除了开裂风险,降低了最大减薄率。为取得更好的成形效果,选取压边力、摩擦系数、冲压速度、凸凹模间隙4个重要成形工艺参数进行正交试验及参数优化,得出最优工艺方案为:压边力250 k N、摩擦系数0.13、冲压速度1000 mm·s-1和凸凹模间隙2.42 mm,最终零件的最大减薄率为24.33%,最大增厚率为6.54%。采用优化后方案进行实际拉深试模,得出零件的成形性能与有限元模拟结果一致,工件质量完全符合设计要求。  相似文献   

19.
铝合金覆盖件冲压成形遇到的常见质量问题是起皱、破裂和回弹。利用计算机辅助实验(CAT)技术研究工艺参数和板坯形状对某汽车发动机罩外板成形质量的影响,找出满足质量评价指标要求的最优工艺水平组合。结果表明:实验方案中所有工艺水平组合均能很好地控制制件的起皱和破裂;一个板厚的凸凹模间隙有利于改善制件的贴膜性;采用矩形板坯可降低制件局部的最大减薄率和削弱其切边后的回弹;压边力和拉深筋高度对定量评价指标的影响不显著,但适当提高压边力和增加拉深筋高度可在一定程度上减小制件的回弹量。在压边力300 kN、凸凹模间隙0.8 mm、拉深筋高度14 mm、矩形板坯(虚拟)拉深速度3000 mm·s-1条件下,能够获得满足质量评价指标要求的发动机罩外板制件。  相似文献   

20.
为了提高锆合金支撑架的冲压成形质量,基于Dynaform软件和正交试验设计方法,将最大减薄率作为评价指标,研究了折弯半径、板料厚度、摩擦因数、凸凹模间隙、压边力和冲压速度等参数对支撑架成形质量的影响规律。通过数值模拟获得了样本数据,利用多层感知机神经网络训练出预测支撑架减薄率的模型,对各因素的相关性进行分析,并通过粒子群优化算法得到了最优参数方案。结果表明:多层感知机神经网络模型能够有效预测支撑架的减薄率。在影响支撑架冲压的各参数中,折弯半径和摩擦因数的影响较大,凸凹模间隙和冲压速度的影响较小。采用粒子群算法优化后的参数方案进行冲压成形,最大减薄率降低24.2%,可有效降低支撑架的破裂率,提高支撑架的冲压成形质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号