首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用自制的碳羟基磷灰石(CHAP)作为吸附剂处理人工湖水,分别考察了pH值、作用时间、吸附剂用量、温度等因素对色度和COD去除效果的影响.结果表明,在常温、pH值为5.5、吸附时间为60 min、CHAP用量为10 g·L-1的务件下,CHAP对人工湖水的色度和COD去除率分别达到82%、81%.CHAP吸附人工湖水中COD的机理符合一级动力学规律,动力学方程为In(co/c)=0.5013t 0.9136,反应速率常数k=0.5013 h-1,半衰期t1/2=1.38 h.  相似文献   

2.
研究了碳羟磷灰石(CHAP)对Ni2+的吸附性能。从pH值、吸附时间及初始Ni2+浓度三方面对吸附能力的影响进行吸附试验。试验结果表明,在常温常压,CHAP吸附Ni2+的最佳pH值为6,最佳吸附时间为60 min,吸附量达到35.48 mg/g。CHAP对Ni2+的吸附过程符合准二级反应动力学模型。CHAP吸附Ni2+的能力随着废水中Ni2+浓度增加而增加,最大吸附量为38.8 mg/g,CHAP对Ni2+的吸附符合Langmuir吸附等温式。  相似文献   

3.
利用红外光谱、扫描电子显微镜、X射线衍射仪等测试技术对脲素和蛋壳制成的碳羟基磷灰石(carbonate hydroxylapatite,CHAP)样品表面化学组成进行了表征,并考察了pH值、吸附时间和苯胺浓度对CHAP吸附水中苯胺的影响,以及其吸附动力学和热力学特征。结果表明:当pH=6,吸附时间为60min,苯胺初始浓度为30mg/L,CHAP对苯胺的吸附效果更好。该过程可用Langmuir Freundlich等温式进行描述,但更符合Freundlich经验公式。分别采用准一级动力学模型和准二级动力学模型考察吸附动力学行为,2个模型与实验数据之间有很好的相关性。吸附热力学行为表明该吸附过程是放热和自发的。  相似文献   

4.
碳羟磷灰石对废水中Zn~(2+)的去除及机理探讨   总被引:2,自引:2,他引:0  
利用废弃的鸡蛋壳为主要原料合成碳羟磷灰石(CHAP),用以去除废水中的Zn2+。分别考查了废水中Zn2+的初始浓度、CHAP的用量、pH值、温度及作用时间等因素对CHAP去除Zn2+的吸附效果的影响以优化吸附条件。结果表明,用2.5g/L的CHAP处理Zn2+的质量浓度为100mg/L的废水,40℃条件下,处理45min,Zn2+的去除率可达98.67%,最佳pH值为6~7。同时探讨了CHAP对重金属离子Zn2+的吸附机理,吸附机理研究表明,CHAP对Zn2+的主要吸附形式为离子交换吸附和表面吸附。  相似文献   

5.
研究了717强碱阴离子交换树脂对苯酚的吸附性能。结果表明,在pH=10~13时,吸附能力最好。等温吸附符合Freundlich和Langmuir经验式。在293~313 K条件下,苯酚吸附量为220~260 mg/g的吸附焓变为-13.69~-12.02 kJ/mol,吸附自由能变为-7.02~-7.21 kJ/mol,吸附熵变为-22.76~-15.37 J/(K.mol)。吸附动力学符合Lagergren准二级速率方程,吸附速率常数为8.5×10-4~2.74×10-3g/(mg.min),吸附活化能为44.1 kJ/mol。303 K下其静态累积饱和吸附容量为399.8 mg/g(4.253 mmol/g)。用0.05 mol/L HCl溶液能定量洗脱苯酚,洗脱率达99%。  相似文献   

6.
利用废弃的鸡蛋壳为主要原料合成碳羟磷灰石(CHAP)。用以去除废水中的Zn^2+。分别考查了废水中Zn^2+的初始浓度、CHAP的用量、pH值、温度及作用时间等因素对CHAP去除Zn^2+的吸附效果的影响以优化吸附条件。结果表明,用2.5g/L的CHAP处理Zn^2+的质量浓度为100mg/L的废水,40℃条件下,处理45min,Zn^2+的去除率可达98.67%。最佳pH值为6~7。同时探讨了CHAP对重金属离子Zn^2+的吸附机理。吸附机理研究表明.CHAP对Zn^2+的主要吸附形式为离子交换吸附和表面吸附。  相似文献   

7.
时光霞  刘郁 《广东化工》2014,(8):104-105,107
文章利用β-环糊精(β-CD)的结构和性能对含苯酚废水进行处理,通过实验考查了吸附时间、pH、温度、用量、废液浓度等因素对吸附率的影响,得出实验的最佳工艺条件为:吸附时间为240 min,pH为5~7,β-CD用量为4 g/L,苯酚初始浓度为100 mg/L,吸附温度40℃,最高吸附率可以达到42.5%。进一步研究在30℃条件下,β-CD吸附苯酚废水过程符合Freundlieh吸附模型。  相似文献   

8.
利用十六烷基三甲基溴化铵(CTAB)对颗粒活性炭进行改性。用红外光谱(FT-IR)、X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)和氮吸附脱附法对改性活性炭的结构和组成进行表征。用单一变量法研究了CTAB的质量浓度和初始pH值对CTAB活性炭改性的影响,研究了吸附时间、吸附温度、苯酚初始质量浓度、苯酚pH、CTAB改性活性炭投加量等对苯酚去除率的影响,并对吸附过程进行了动力学研究。得到了最佳吸附条件为:以质量浓度为2g/L的CTAB改性活性炭为吸附剂,CTAB改性活性炭投加量为7g/L、吸附温度为35℃、吸附时间为90min、苯酚初始质量浓度为200mg/L、初始pH=6时,苯酚去除率达到94.76%,CTAB改性活性炭的吸附量为27.07mg/g。Langmuir等温吸附模型可较好地描述CTAB改性活性炭对水中苯酚的等温吸附过程,通过Langmuir模型计算得到吸附剂对苯酚的最大单位吸附量为72.62mg/g。CTAB改性活性炭对苯酚的吸附过程符合拟二级动力学方程。  相似文献   

9.
通过共沉淀法制备了层状双金属氢氧化物Mg/Al/Fe-LDHs,考察了LDHs投加质量、苯酚初始质量浓度、溶液pH和反应温度(T)对苯酚吸附特性的影响。结果表明,LDHs投加质量为0.5 g、苯酚初始质量浓度为10 mg/L、pH=8.0、T=35℃最佳吸附条件下,平衡吸附量达17.41 mg/g。吸附过程符合一级动力学方程,吸附速率为0.021 7 min-1,平衡吸附量为9.30 mg/g。吸附前后材料的XRD和FT-IR表征结果表明,LDHs吸附苯酚机理不仅涉及表面吸附,还包括LDHs板层结构重建和羟基离子置换。  相似文献   

10.
以正硅酸乙酯(TEOS)为硅源,十六烷基三甲基溴化铵(CTAB)为模板和碳源,用水热合成法制备介孔氧化硅(MCM-41),再加浓硫酸,经过干燥、煅烧、水洗,得到介孔碳硅复合材料。考察其对环境水体中Cr~(6+)和苯酚的吸附性能。结果表明,吸附苯酚的最适条件:30℃,pH=5,吸附时间24 h,此时饱和吸附量为7~11 mg/g;吸附Cr~(6+)的最适条件:20℃,pH=8,吸附时间24 h,饱和吸附量为15~20 mg/g。用材料吸附微污染水中Cr~(6+)和苯酚,去除率分别达到70%和79.77%。  相似文献   

11.
12.
Adsorption of phenol from aqueous solution onto cashew nut shell (CNS) was investigated to assess the possible use of this adsorbent. The influence of various parameters such as contact time, phenol concentration, adsorbent dose, pH, and temperature has been studied. Studies showed that the pH of aqueous solutions affected phenol removal as a result of decrease in removal efficiency with increasing solution pH. The experimental data were analysed by the Langmuir equation. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 5.405 mg/g. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° have also been evaluated and it has been found that the sorption process was feasible, spontaneous, and exothermic in nature. The pseudo‐first‐order and pseudo‐second‐order kinetic models were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of phenol could be described by the pseudo‐second‐order equation, suggesting that the adsorption process is presumable a chemisorption. The CNS investigated in this study showed good application potential for the removal of phenol from aqueous solution.  相似文献   

13.
周立  钟宏  李超  赵刚 《过程工程学报》2010,10(3):462-469
研究了H-103大孔吸附树脂对600~1000 mg/L苯酚水溶液中酚的吸附,考察了初始酚浓度、溶液pH值及温度对吸附性能的影响. 结果表明,在20 min内吸附达到平衡,吸附动力学可用拟二级动力学模型描述. 苯酚在大孔树脂上的吸附等温线很好地符合Langmuir吸附等温方程,在25℃下其饱和吸附量和Langmuir常数分别为86.00 mg/g和0.2719 L/mg.  相似文献   

14.
The present study deals with the adsorptive removal of phenol and resorcinol from aqueous solution onto rice husk ash. The competitive adsorption equilibrium of the binary mixtures (phenol/resorcinol) was determined by conducting batch experiments with initial concentration varying in the range of 50 to 1000 mg/L. In order to evaluate multicomponent adsorption isotherm parameters, individual adsorption equilibrium studies were also carried out. Langmuir, Freundlich and Redlich-Peterson equilibrium isotherm models were used for single compound equilibrium sorption data modeling. All three models almost similar fit for single compound equilibrium data. Binary equilibrium adsorption data and the parameter evaluated from single adsorption data were fitted to various multicomponent isotherm models by minimizing the sum of square of error. The extended Langmuir model gave the better fit to the experimental adsorption data of phenol and resorcinol from binary systems onto rice husk ash. It seems that both phenol and resorcinol compete for the same adsorption sites on rice husk ash. The net interactive effect of phenol and resorcinol on the adsorption of resorcinol by rice husk ash was found to be antagonistic.  相似文献   

15.
《分离科学与技术》2012,47(2):300-308
The potential use of different activated carbons (ACs) prepared from dates pits and phosphoric acid for the removal of phenol from aqueous solutions was investigated. Date pits were converted into five different types of activated carbons by air and phosphoric acid activation. The specific surface area (BET) of the prepared ACs varied from 794 m2/g, for the phosphoric acid:date pit ratio of 5:1, to 1707 m2/g for a ratio of 2:1. Batch adsorption experiments revealed that the adsorption of phenol varied among all of the prepared ACs, where the 2:1 AC showed the highest uptake. Equilibrium pH studies showed that the phenol removal was pH dependent and the maximum phenol uptake occurred at an equilibrium pH of 3.0. Dynamics studies indicated that the initial uptake of phenol on 2:1 AC at pH 4 was rapid, where 80% of the maximum uptake was achieved during the first 30 minutes; both surface adsorption and intraparticle diffusion were involved in the adsorption process and the data followed the pseudo second-order reaction. The equilibrium adsorption data of phenol on 2:1 AC at solution pH 3 was best described by the Redlich-Peterson, Sips, and Langmuir models.  相似文献   

16.
In this study, we aimed to investigate the removal of basic dyes, including Safranin T (ST), Nile Blue A (NBA), and Brilliant Cresyl Blue (BCB), from aqueous solution with a sulfonated phenol–formaldehyde resin. This sulfonated resin was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The adsorption properties of this resin were investigated under different adsorption conditions with different initial dye concentrations, contact times, and pH values. The adsorption equilibrium data were analyzed with Langmuir and Freundlich models. The adsorption behaviors of ST, NBA, and BCB onto the sulfonated resol‐type phenol–formaldehyde resin were better described by the Freundlich model. The adsorption capacities of the sulfonated resol resin for ST, NBA, and BCB decreased in the following order: NBA > BCB > ST. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Activated carbons prepared from date pits, an agricultural waste byproduct, have been examined for the adsorption of phenol from aqueous solutions. The activated carbons were prepared using a fluidized bed reactor in two steps; carbonization at 700 °C for 2 hours in N2 atmosphere and activation at 900 °C in CO2 atmosphere. The kinetic data were fitted to the models of intraparticle diffusion, pseudo‐second order, and Lagergren, and followed more closely the pseudo‐second‐order chemisorption model. The isotherm equilibrium data were well fitted by the Freundlich and Langmuir models. The maximum adsorption capacity of activated date pits per Langmuir model was 16 times higher than that of nonactivated date pits. The thermodynamic properties calculated revealed the endothermic nature of the adsorption process. The uptake of phenol increased with increasing initial phenol concentration from10 to 200 ppm and temperature from 25 to 55 °C, and decreased with increasing the solution pH from 4 to 12. The uptake of phenol was not affected by the presence of NaCl salt.  相似文献   

18.
The adsorption equilibria of phenol and chloroform from aqueous solutions on four different particle sizes of activated charcoal were examined at different initial concentrations of the adsorbates. The experimental data were analyzed using the Langmuir and Freundlich isotherm models. Both models fit the adsorption data for phenol. The Freundlich model more accurately fits the adsorption data for chloroform than the Langmuir model. The sorption kinetics for phenol was studied using pseudo‐first‐order and second‐order kinetic models. The adsorption data better fit the second‐order model. The results of the study show that activated charcoal can be used as potential adsorbent for phenol and chloroform in drinking water.  相似文献   

19.
采用KH2PO4活化原材料芝麻秆,分别在300和600℃对活化后芝麻秆进行炭化,制得炭化芝麻秆吸附剂(CSS1和CSS2),通过静态吸附实验研究了其对苯酚的吸附性能,考察了pH值、吸附时间和温度对苯酚吸附的影响,分析了炭化芝麻秆对苯酚的吸附机理. 结果表明,CSS2吸附苯酚能力比CSS1强,其吸附较好地满足Langmuir和Freundlich等温方程,在20, 30和40℃下CSS2对苯酚的最大吸附容量分别高达13.53, 18.42和21.32 mg/g;动力学研究表明其吸附速率快,在150 min内能达到吸附平衡,准二级动力学模型较好地描述了该吸附行为,相关系数高达0.999;计算了热力学参数DGq, DHq和DSq的值,该吸附过程为自发过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号