首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 750 毫秒
1.
采用Gleeble-1500D热/力模拟试验机对Q235B连铸坯高温力学性能进行了测试。测试了试验温度为950℃,应变速率分别为1×10-3、5×10-3、1×10-2、5×10-2s-1时Q235B钢连铸坯的高温力学性能,以及应变速率为5×10-3s-1的条件下,测试温度在700~1000℃时Q235B钢连铸坯的高温力学性能。结果表明:Q235B钢连铸坯的高温抗拉强度和屈服强度随应变速率的升高而增大,而断面收缩率随着应变速率的升高则降低;应变速率对Q235B钢连铸坯高温强度的影响分为敏感区和不敏感区,温度为950℃时,临界应变速率ε觶c为1×10-2s-1;随温度升高,Q235B钢连铸坯的高温抗拉强度和屈服强度均降低,Q235B钢连铸坯的断面收缩率Z随温度的升高总呈上升趋势;在850~950℃内出现了脆化区,在900℃左右时,Z值为58%;温度对硬化指数n的影响较为复杂,硬化指数n随应变速率的增大而降低。  相似文献   

2.
针对V微合金化高强异型钢在轧制过程中易出现翼缘裂边的情况,采用Gleeble 3800热模拟试验机对V质量分数为0.060%~0.080%的连铸坯试样在应变速率为1×10-3 s-1的试验条件下进行了700~950 ℃高温拉伸试验。通过对高温拉伸试样断口形貌、断面收缩率、抗拉强度及应力-应变曲线等的分析,得出试验钢的第III脆性温度区为750~875 ℃,不同变形温度下应力-应变曲线均表现为动态回复,并且随着变形温度的升高,曲线向下向左移动,最大应力对应的应变逐渐降低。因此,连铸生产时应优化配水模型,连铸坯入矫直机温度为900~950 ℃,以保证铸坯良好的表面质量。  相似文献   

3.
于正禄 《轧钢》2007,24(1):45-48
针对V微合金化高强异型钢在轧制过程中易出现翼缘裂边的情况,采用Gleeble 3800热模拟试验机对V质量分数为0.060%~0.080%的连铸坯试样在应变速率为1×10-3 s-1的试验条件下进行了700~950 ℃高温拉伸试验。通过对高温拉伸试样断口形貌、断面收缩率、抗拉强度及应力-应变曲线等的分析,得出试验钢的第III脆性温度区为750~875 ℃,不同变形温度下应力-应变曲线均表现为动态回复,并且随着变形温度的升高,曲线向下向左移动,最大应力对应的应变逐渐降低。因此,连铸生产时应优化配水模型,连铸坯入矫直机温度为900~950 ℃,以保证铸坯良好的表面质量。  相似文献   

4.
对两种低镍奥氏体不锈钢在温度950℃~1200℃进行拉伸试验和拉伸卸载试验,分析塑性材料在高温单轴拉伸过程中的几何失稳特性。结果表明,当载荷达到最大时,试样发生载荷失稳,此后再经历一段变形才发生几何失稳。载荷失稳之前,试样各处变形均匀;载荷失稳到几何失稳阶段,试样局部出现了不均匀变形,但这种局部不均匀并不立即发展为几何失稳。随着变形温度升高,载荷失稳真应变和加工硬化指数n均无明显变化,且大小相近,表明载荷失稳应变受n值控制;而几何失稳应变和应变速率敏感性系数m都随温度升高而增大,表明m值决定了载荷失稳到几何失稳阶段的应变,并且该应变是几何失稳应变的主要因素。  相似文献   

5.
宁静  王敖  苏杰  程兴旺 《锻压技术》2022,(12):234-239
采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200℃,应变速率为0.01~10 s^(-1),最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100℃、应变速率为1~10 s^(-1)。  相似文献   

6.
在变形温度350~500℃、应变速率0.01~1 s~(-1)条件下,利用Gleeble-3500热模拟实验机对2A12硬铝合金板进行热拉伸实验。结果表明:峰值应力随温度升高而减小,随应变速率提高而增大;随着应变速率减小,断裂总伸长率升高,而均匀伸长率降低;应变速率较低时,其断裂总伸长率在350~450℃时较高,升高到500℃时迅速降低,均匀伸长率则对温度变化不敏感;应变速率较高时,试样断裂总伸长率对温度变化不敏感,均匀伸长率随温度升高而降低。根据实验结果,采用Z参数建立的流变应力本构模型,能较好地描述2A12铝合金板材热拉伸变形下的流变行为。  相似文献   

7.
铸态AZ31镁合金的超塑性性能及流变应力   总被引:3,自引:0,他引:3  
通过连铸AZ31镁合金的单向拉伸实验,研究了该合金的超塑性变形性能及不同拉伸变形条件下的流变应力。结果表明,在温度为300℃~450℃,应变速率.ε为4.25×10-4s-1的情况下,连铸ZA31镁合金表现出超塑性。在温度为400℃,应变速率.ε为4.25×10-4s-1时,延伸率增加了200%,具有较好的超塑性性能。用光学显微镜观察变形前后拉伸试样的微观组织发现:试样的初始晶粒尺寸约为15μm,在变形之后颈缩区域的晶粒长大现象不是很明显,晶粒沿着变形方向有所伸长,但晶粒形状基本保持为等轴状。  相似文献   

8.
在Gleeble-1500D热模拟机上对粉末冶金高速钢进行了变形温度为1000~1150℃、应变速率为0.001~1.0 s-1;最大变形量为60%的等温热模拟压缩变形实验,并对不同变形温度和变形速率下变形试样进行了微观组织变化的观察。结果表明:流变应力和微观组织受变形温度和应变速率的影响显著,流变应力随变形温度的升高和应变速率的降低而降低,且流变应力在经历加工硬化阶段后均表现出加工软化,最后出现稳态流动特征。随着应变速率的减小,局部塑性流动减弱,回复与动态再结晶进行较充分,碳化物分布趋于均匀;随着变形温度的升高,扩散和动态再结晶更容易,发生连续的再结晶,晶粒容易长大粗化。综合考虑材料的微观组织和热加工图,最佳的热加工变形温度为1050~1100℃和应变速率为0.1~0.01 s-1。  相似文献   

9.
研究了Ti-24Al-15Nb-1.5Mo合金在900~1020 ℃,3.3×10-4~3.3×10-2 s-1条件下进行的超塑性拉伸性能结果表明:除温度900 ℃,应变速率3.3×10-2 s-1外,合金都显示出超塑性,延伸率范围为105%~1570%,最佳变形温度为980 ℃,最佳应变速率为3.3×10-4 s-1,在此条件下拉伸时,延伸率达到最大值1570%.应变速率对Ti-24Al-15Nb-1.5Mo合金的组织演化有显著影响.在较高应变速率下变形,α2相尺寸先随温度升高至940 ℃有所减小,之后则随温度的升高有所粗化;而在较低的应变速率下变形,α2相呈粗化且不均匀的趋势,高的延伸率与大晶粒周围镶嵌许多小颗粒能有效协调变形.  相似文献   

10.
对LF2铝合金分别在不同应变速率(0.07~0.33 S-1)和不同变形温度(220~480℃)进行高温拉伸试验,研究其热变形流变应力的变化规律.结果表明,流变应力随变形温度的升高而降低;随应变速率的增加而升高,表现出显著的应变强化和温度软化效应;且在高温、高应变速率条件下,材料发生了动态回复和局部动态再结晶.  相似文献   

11.
从应变时效和退火处理入手,通过设置不同预应变量模拟管材出现均匀塑性变形而未发生颈缩,研究不同热处理方式对预应变X80管线钢性能的影响。研究发现未处理的X80管线钢的拉伸曲线具有连续屈服特征,没有明显的屈服平台,在均匀塑性变形阶段进行预拉伸后管材发生明显加工硬化,屈服强度最大增加值为148 MPa,管材的断后伸长率和形变硬化指数随着预应变量增大出现降低的现象;预应变管材经260 ℃时效处理后其拉伸曲线出现屈服平台,屈服强度继续升高,断后伸长率则持续降低,应变硬化性能未见明显变化;而预应变管材经660 ℃退火处理后其拉伸曲线出现明显屈服平台,屈服强度小于原始管材强度,屈强比、断后伸长率和形变硬化指数等性能参数得到明显改善。  相似文献   

12.
通过热拉伸、热压缩试验研究了不同氮含量的022Cr25Ni7Mo3N双相不锈钢的热加工行为和软化机制。结果表明,试验钢高温抗拉强度随N含量增加而提高,该影响关系在较低变形温度区间尤为明显;在1100℃平面压缩达到稳态流变之后,试验钢的流变应力很快再次上升,出现二次硬化现象,N含量提高致使试验钢在更低的应变条件下更快地进入二次硬化阶段;试验钢高温变形过程中的应变主要传导到高温更软的铁素体相中,该相积蓄的较大应变能促进了铁素体的动态再结晶启动;022Cr25Ni7Mo3N双相不锈钢的软化机制主要是铁素体的动态回复和动态连续再结晶。  相似文献   

13.
Lin Tian  Zhi-Wei Shan  Evan Ma 《Acta Materialia》2013,61(13):4823-4830
Glasses are normally brittle materials with no tensile ductility at room temperature. Using in situ, quantitative nanomechanical tests inside a transmission electron microscope, we demonstrate that certain nanoscale metallic glass samples are exceptions to this general rule. Such metallic glasses can be intrinsically ductile, capable of elongation and necking under uniaxial tension, in lieu of catastrophic fracture caused by severe shear banding. Beam-off tests confirm that the ductile behaviors are not artifacts due to electron-beam effects during the in situ tests. Additional experiments indicate that ductile necking gives way to fast shear banding failure at increased samples sizes and elevated strain rates. The observed spread-out shear transformations delaying strain localization and severe shear banding are explained in terms of the propensity for participation in deformation, while the tendency towards necking is attributed to the lack of strain hardening mechanism and inadequate strain rate hardening.  相似文献   

14.
In order to analyze the effect of viscous medium on the deformation behavior of sheet metals in viscous pressure bulging (VPB), the entire deformation process including instability and fracture was investigated real-timely by the aid of electronic speckle pattern interferometry (ESPI). Images of speckle patterns were captured continuously to obtain fringe patterns representing the full field strain rate. Values of strain rates were calculated based on the fringe patterns. The evolution of the weak region from the initial defect to the groove until crack was also observed through the fringe patterns. The onset of diffuse and localized necking were determined qualitatively and quantitatively. Experimental results show that the deformation of sheet metals in VPB passed through five states, namely, uniform deformation, strain localization, diffuse necking, localized necking and fracture. A defect emerged in strain localization. The growth of the defect caused the diffuse necking and generated a groove. The groove expanded mainly in length direction until the localized necking occurred. Finally the specimen fractured as a result of groove deepening. The tangential adhesive stress provided by viscous medium in VPB restricted the locally larger strain of the specimen. The diffuse necking was postponed greatly. Theoretical prediction of the limit strains of sheet metals in VPB would be made based on the experimental results in further work.  相似文献   

15.
在变形温度1100 ℃,变形量30%的条件下进行平面应变压缩,并对压缩后的06Cr19Ni9NbN钢进行微观组织观察及力学性能测试。将压缩后试样进行1050 ℃保温2 h 的固溶处理,观察固溶处理后试样微观组织及力学性能的变化。结果表明:热压缩过程中,变形量越大的区域发生动态再结晶的程度越高,晶粒尺寸越小,组织越均匀。固溶处理后,细小的再结晶晶粒逐渐长大,组织变得较为均匀,晶粒尺寸增加到100 μm后逐渐趋于稳定。固溶处理对该钢的伸长率影响不大,但固溶处理后其屈服强度降低约20 MPa。  相似文献   

16.
Three initial tensile specimens having different textures and, in consequence, different r-values were cut from a sheet of an interstitial-free steel. Using these specimens, the effect of r-value and texture on plastic deformation and the necking behavior were studied by tackling the strain state and texture during tensile tests. A reduced decrease in work hardening rate of tensile specimens with higher r-values led to a slower onset of diffuse necking which offers an increased uniform elongation. A slower reduction in thickness of specimens with a higher r-value provided a favorable resistance against onset of failure by localized necking.  相似文献   

17.
王龙飞 《连铸》2022,41(5):82-87
为解决Q355B钢板材表面星状裂纹问题,采用热力学计算、金相分析、修磨、抛丸、酸洗、低倍分析、扫描电镜及能谱分析等方式对表面星状裂纹产生的原因进行了系统研究。研究结果认为,Q355B钢板表面裂纹处未发现脱碳层、氧化原点、第二相粒子、夹杂物和铜元素,说明裂纹不是源于铸坯缺陷。对铸坯分别进行热装和冷装发现冷装铸坯生产的钢板裂纹比例较低,结合两相区分析表明星状裂纹产生主要与铸坯在Ar3Ar1两相区767~677 ℃内进行热装有关。通过自主设计喷淋装置,控制铸坯喷淋前温度在790 ℃以上,在入加热炉前对铸坯进行喷淋冷却至510 ℃以下从而使入炉温度低于635 ℃,Q355B钢热装星裂由攻关前的0.99%降至2021年攻关后的0.07%。  相似文献   

18.
采用Gleeble-1500D热模拟试验机,在变形温度为900~1250℃、应变速率为0.001~1 s^-1的条件下对铸态ER8车轮钢进行热压缩试验,得到真应力-真应变曲线。结果发现:其真应力-真应变曲线符合动态再结晶型软化机制,变形初始阶段,材料发生硬化,真应力快速增加,随着变形的继续,材料发生动态回复,加工硬化速率减缓;在材料变形过程中,材料畸变的应变储存能增加,动态再结晶激活,真应力迅速降低,后硬化及软化达到动态平衡。并分析了变形温度和应变速率对该材料高温下真应力的影响,发现真应力的大小随着变形温度的升高及应变速率的降低而减小。通过对试验数据的归纳整理得出,铸态ER8车轮钢的热变形激活能为258.4 k J·mol^-1。建立了Arrhenius双曲正弦本构方程,用作图法求解加工硬化速率,找出峰值应变及临界应变,基于此建立动态再结晶体积分数模型。其能精准地预测此材料的高温软化行为,为有限元数值模拟提供了理论基础。  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号