首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A hydrogeologic conceptual model that improves understanding of variability in aquitard integrity is presented for a fractured sedimentary bedrock unit in the Cambrian-Ordovician aquifer system of midcontinent North America. The model is derived from multiple studies on the siliciclastic St. Lawrence Formation and adjacent strata across a range of scales and geologic conditions. These studies employed multidisciplinary techniques including borehole flowmeter logging, high-resolution depth-discrete multilevel well monitoring, fracture stratigraphy, fluorescent dye tracing, and three-dimensional (3D) distribution of anthropogenic tracers regionally. The paper documents a bulk aquitard that is highly anisotropic because of poor connectivity of vertical fractures across matrix with low permeability, but with ubiquitous bed parallel partings. The partings provide high bulk horizontal hydraulic conductivity, analogous to aquifers in the system, while multiple preferential termination horizons of vertical fractures serve as discrete low vertical hydraulic conductivity intervals inhibiting vertical flow. The aquitard has substantial variability in its ability to protect underlying groundwater from contamination. Across widespread areas where the aquitard is deeply buried by younger bedrock, preferential termination horizons provide for high aquitard integrity (i.e. protection). Protection is diminished close to incised valleys where stress release and weathering has enhanced secondary pore development, including better connection of fractures across these horizons. These conditions, along with higher hydraulic head gradients in the same areas and more complex 3D flow where the aquitard is variably incised, allow for more substantial transport to deeper aquifers. The conceptual model likely applies to other fractured sedimentary bedrock aquitards within and outside of this region.  相似文献   

2.
Groundwater movement and availability in crystalline and metamorphosed rocks is dominated by the secondary porosity generated through fracturing. The distributions of fractures and fracture zones determine permeable pathways and the productivity of these rocks. Controls on how these distributions vary with depth in the shallow subsurface (<300 m) and their resulting influence on groundwater flow is not well understood. The results of a subsurface study in the Nashoba and Avalon terranes of eastern Massachusetts (USA), which is a region experiencing expanded use of the fractured bedrock as a potable-supply aquifer, are presented. The study logged the distribution of fractures in 17 boreholes, identified flowing fractures, and hydraulically characterized the rock mass intersecting the boreholes. Of all fractures encountered, 2.5% are hydraulically active. Boreholes show decreasing fracture frequency up to 300 m depth, with hydraulically active fractures showing a similar trend; this restricts topographically driven flow. Borehole temperature profiles corroborate this, with minimal hydrologically altered flow observed in the profiles below 100 m. Results from this study suggest that active flow systems in these geologic settings are shallow and that fracture permeability outside of the influence of large-scale structures will follow a decreasing trend with depth.  相似文献   

3.
 Here we investigate geochemical characteristics of sediment in different compartments of a karst aquifer and demonstrate that mobile sediments in a karst aquifer can exhibit a wide range of properties affecting their contaminant transport potential. Sediment samples were collected from surface streams, sinkholes, caves, wells, and springs of a karst aquifer (the Barton Springs portion of the Edwards (Balcones Fault Zone) Aquifer, Central Texas) and their mineralogy, grain-size distribution, organic carbon content, and specific surface area analyzed. Statistical analysis of the sediments separated the sampling sites into three distinct groups: (1) streambeds, sinkholes, and small springs; (2) wells; and (3) caves. Sediments from the primary discharge spring were a mix of these three groups. High organic carbon content and high specific surface area gives some sediments an increased potential to transport contaminants; the volume of these sediments is likely to increase with continued urbanization of the watershed. Received: 13 April 1998 · Accepted: 6 October 1998  相似文献   

4.
A small-scale hydrogeological study was conducted in a fractured carbonate-rock aquifer located in a quarry to relate groundwater flow to the fracture network. The field study in the St-Eustache quarry, which integrates structural surveys, well logging and hydraulic tests, showed that the most important features that affect groundwater flow in the sedimentary aquifer are high hydraulic conductivity horizontal bedding planes. Vertical fractures are abundant in the quarry and throughout the region, but they have a minor effect on groundwater flow. To have a significant impact on the flow regime and lead to vertical groundwater flow, the permeability of all vertical joints need to be enhanced compared to what was generally observed at the site. Such an increase in permeability could potentially occur where dissolution and fracturing is more intense or at stress release locations such as near the surface in the quarry.  相似文献   

5.
The karsted limestone valleys of central Pennsylvania contain two populations of sinkholes. Solution sinkholes occur in the Champlainian limestone units along the margins of the valleys. Solution sinkholes are permanent parts of the landscape and, although a nuisance to construction, do not present other problems. The second population is the suffosional or soil-piping sinkholes These occur on all carbonate rock units including the Beekmantown and Gatesburg dolomites that comprise the two principal carbonate aquifers in the valley. Suffosional sinkholes are the principal land-use hazard. Suffosional sinkholes are transient phonomena. They occur naturally but are exacerbated by runoff modifications that accompany urbanization Suffosional sinkholes are typically 1.5–2.5 m in diameter depending on soil thickness and soil type. The vertical transport of soil to form the void space and soil arch that are the precursors to sinkhole collapse is through solutionally widened fractures and cross-joints and less often through large vertical openings in the bedrock. The limited solution development on the dolomite bedrock combined with soil thickness, seldom greater than 2 m, limits the size of the sinkholes. All aspects of suffosional sinkhole development are shallow processes: transport, piping, void and arch formation, and subsequent collapse take place usually less than 10 m below the land surface Factors exacerbating sinkhole development include pavement, street, and roof runoff which accelerates soil transport Such seemingly minor activities as replacing high grass and brush with mowed grass is observed to accelerate sinkhole development. Dewatering of the aquifer is not a major factor in this region  相似文献   

6.
Recent work in southern Ontario, Canada, demonstrates anomalously high vertical groundwater flow velocities (>1 m/year) through a thick (as much as 60 m), sandy silt till aquitard (Northern till), previously assumed to be of very low permeability (hydraulic conductivity <10–10 m/s). Rapid recharge is attributed to the presence of fractures and sedimentary heterogeneities within the till, but the field-scale flow regime is poorly understood. This study identifies the nature of physical groundwater pathways through the till and provides estimates of the associated groundwater fluxes. The aquitard groundwater flow system is characterized by integrating details of the outcrop and subsurface sedimentary characteristics of the till with field-based hydrogeologic investigation and numerical modeling. Outcrop and subsurface data identify a composite internal aquitard stratigraphy consisting of tabular till beds (till elements) separated by laterally continuous sheet-like sands and gravels (interbeds) and boulder pavements. Individual till elements contain sedimentary heterogeneities, including discontinuous sand and gravel lenses, vertical sand dikes, and zones of horizontal and vertical fractures. Hydrogeologic field investigations indicate a three-layer aquitard flow system, consisting of upper and lower zones of more hydraulically active and heterogeneous till separated by a middle unit of relatively lower hydraulic conductivity. Groundwater pathways and fluxes in the till were evaluated using a two-dimensional aquitard/aquifer flow model which indicates a step-wise flow mechanism whereby groundwater moves alternately downward along vertical pathways (fractures, sedimentary dikes) and laterally along horizontal sand interbeds within the till. This model is consistent with observed hydraulic-head and isotope profiles, and the presence of tritiated pore waters at various depths throughout the till. Simulations suggest that a bulk aquitard vertical hydraulic conductivity on the order of 1×10–9 m/s is required to reproduce observed hydraulic-head and tritium profiles. Electronic Publication  相似文献   

7.
Complex flow circulation patterns are likely to be present in fault‐controlled groundwater flow systems, such as carbonate aquifers. Nevertheless, not much information is available for faults in carbonates, and their hydrogeological behaviour is often neglected in conceptual and numerical models. The understanding of this aspect of subsurface fluid flow has been improved in a carbonate aquifer, where hydrogeological investigations at site scale demonstrated the existence of fault zones that act as barriers. The hydraulic conductivity of the fault core is as low as that of siliciclastic rocks that represent the regional aquitard of the carbonate aquifer. Despite the lower permeability, the fault zones allow a significant groundwater flowthrough and a good interdependence of piezometric heads upgradient and downgradient of the faults. Because of this discontinuous heterogeneity, the aquifer looks like a basins‐in‐series system, where seasonal springs can be detected along some fault zones, as a function of groundwater level fluctuations.  相似文献   

8.
As part of a larger regional research program “KarstEAU”, the authors have applied electrical resistivity tomography (ERT) techniques to characterize heterogeneities in the Port-Miou coastal karst aquifer (Cassis, SE France). Field surveys were carried out on intensely fractured and karstified Urgonian carbonates. Extensive research has characterized macro- and micro-scale geology of the Port-Miou area and particularly underground water-filled conduits and fault/fracture and karst systems within a former quarry. The authors applied 2D ERT along two surface profiles of length 420 and 595 m to test capability for delineating subsurface conduits and possibly relationship between conduit and fault/fracture/karst orientation; and 3D ERT with a dense 120 electrode array at 1 m spacing (11 × 10 m) was applied over an area of the quarry that had been profiled using 3D georadar and which has had intensive nearby structural geological interpretation. The 2D profiling imaged several underground conduits at depths to >50 m below ground surface and below sea level, including possibly the main Port Miou submarine spring and smaller springs. The 2D profiling within the quarry provided a better understanding of the connectivity between major fractures and faults on the quarry walls and secondary springs along the coast supporting flow of the secondary springs along interpreted fracture orientations. In addition, 2D inversion-derived conductivity models indicate that high resistivity zones above sea-level are associated with non-saturated zones and low resistivity anomalies in the non-saturated zone are associated with residual clays in paleokarsts. A partitioned lower resistivity zone below sea-level can be associated with a higher porosity/permeability zone with fractures and karstic features. Inversion models of the dense 3D ERT data indicate a higher resistivity volume within the larger surveyed block. The survey characterized the non-saturated zone and the ERT resistivities are correlated with karst features interpreted by 3D georadar and visible in the inferior wall of the quarry.  相似文献   

9.
Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.  相似文献   

10.
A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a “non-layered” model domain with homogeneous hydraulic and thermal properties; and, a “layered” model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.  相似文献   

11.
Dye-tracing methods are utilized in an area of southwestern Missouri, USA, in order to evaluate factors influencing groundwater flow in the karst lithology. Four new dye traces were conducted in the Burlington Limestone formation of the surficial Springfield Plateau aquifer. Dye traces were conducted with two large sinkholes with mapped caves as their drainage base, one with fluorescein and one with rhodamine-WT. Two other traces, both using fluorescein dye, were performed where dye was introduced into a groundwater-level monitoring well and an exploratory borehole. Results of these four traces indicate that structural geologic control—as expressed by joints, fractures, faults, and photolineaments—does not account solely for the observed dye-trace results. The available data suggest that significant influence on groundwater movement is exerted by bedding planes within the low dip-angle limestone formation or by lithologic variability within the formation (such as silt- or clay-rich layers that have not yet been clearly identified). Average linear tracer velocities from each of the four traces indicate groundwater movement is primarily through conduits that flow slower than open channel surface waters in the region, but significantly faster than typical groundwater flow through porous media.  相似文献   

12.
Grand Mesa is an erosional remnant on the southern margin of the Piceance basin (Colorado, USA) that appears to host topographically driven groundwater flow in low permeability strata via a pervasive network of vertical extensional fractures. The vertical fractures cut more than 1 km of clay-rich lithology ranging in age from Upper Cretaceous through Eocene, and likely formed from horizontal dilation, cooling, and erosional unloading associated with 2.8 km of regional uplift and 1.5 km of incision by the Gunnison and Colorado rivers. The vertical fractures create anisotropy in which vertical permeability exceeds horizontal permeability. This enhances vertical flow and depth of penetration of groundwater, favors local flow regimes over regional flow, and results in groundwater temperatures that are elevated by up to 10°C over mean surface temperatures at the location of springs. The uplift and cooling that formed the fractures may also have produced domains of abnormally underpressured pore fluids and natural gas within blocks of low permeability bedrock bounded by the fractures. Pore pressures inside these blocks may be in disequilibrium with the groundwater flow system due to ongoing stress release, and the long time scales required for pressure equilibration in the low permeability strata.  相似文献   

13.
14.
An understanding of the hydrogeology of Grand Canyon National Park (GRCA) in northern Arizona, USA, is critical for future resource protection. The ~750 springs in GRCA provide both perennial and seasonal flow to numerous desert streams, drinking water to wildlife and visitors in an otherwise arid environment, and habitat for rare, endemic and threatened species. Spring behavior and flow patterns represent local and regional patterns in aquifer recharge, reflect the geologic structure and stratigraphy, and are indicators of the overall biotic health of the canyon. These springs, however, are subject to pressures from water supply development, changes in recharge from forest fires and other land management activities, and potential contamination. Roaring Springs is the sole water supply for residents and visitors (>6 million/year), and all springs support valuable riparian habitats with very high species diversity. Most springs flow from the karstic Redwall-Muav aquifer and show seasonal patterns in flow and water chemistry indicative of variable aquifer porosities, including conduit flow. They have Ca/Mg-HCO3 dominated chemistry and trace elements consistent with nearby deep wells drilled into the Redwall-Muav aquifer. Tracer techniques and water-age dating indicate a wide range of residence times for many springs, supporting the concept of multiple porosities. A perched aquifer produces small springs which issue from the contacts between sandstone and shale units, with variable groundwater residence times. Stable isotope data suggest both an elevational and seasonal difference in recharge between North and South Rim springs. This review highlights the complex nature of the groundwater system.  相似文献   

15.
Water samples from natural springs and artesian wells in the Abano region of northern Italy are characterized by anomalous temperatures and compositions. Concentrations of major components and oxygen isotopes in samples of these fluids have been interpreted in the context of the regional geologic environment, circulation of groundwaters, and reactions between rocks and circulating groundwaters. These considerations define sourceregions and pathlines of the groundwaters.Circulation of fluids in the Abano region is interpreted to be the result of meteoric water infiltration into outcrops of Permian and Mesozoic aquifers in the pre-Alps, which lie north of the Abano region. These aquifers have southerly dips and, therefore, extend under the Abano region at depths between 0.5 and 2.5 km. This aquifer geometry is conducive to forced convection both of aqueous ions derived from the evaporate, limestone and dolomite bearing formations, and of thermal energy along flow paths which extend from the outcrops in the sourceregions to depths of 2 km below the Abano region and upward along high angle faults to thermal springs. Local variation in compositions of water samples is consistent with the mixing of local meteoric waters and formation fluids that were ultimately derived from Alpine sources.  相似文献   

16.
Conspicuous sulfide-rich karst springs flow from Cretaceous carbonates in northern Sierra de Chiapas, Mexico. This is a geologically complex, tropical karst area. The physical, geologic, hydrologic and chemical attributes of these springs were determined and integrated into a conceptual hydrogeologic model. A meteoric source and a recharge elevation below 1,500 m are estimated from the spring-water isotopic signature regardless of their chemical composition. Brackish spring water flows at a maximum depth of 2,000 m, as inferred from similar chemical attributes to the produced water from a nearby oil well. Oil reservoirs may be found at depths below 2,000 m. Three subsurface environments or aquifers are identified based on the B, Li+, K+ and SiO2 concentrations, spring water temperatures, and CO2 pressures. There is mixing between these aquifers. The aquifer designated Local is shallow and contains potable water vulnerable to pollution. The aquifer named Northern receives some brackish produced water. The composition of the Southern aquifer is influenced by halite dissolution enhanced at fault detachment surfaces. Epigenic speleogenesis is associated with the Local springs. In contrast, hypogenic speleogenesis is associated with the brackish sulfidic springs from the Northern and the Southern environments.  相似文献   

17.
Several natural and anthropogenic tracers have been used to evaluate groundwater residence time within a karstic limestone aquifer in southeastern New Mexico, USA. Natural groundwater discharge occurs in the lower Pecos Valley from a region of karst springs, wetlands and sinkhole lakes at Bitter Lakes National Wildlife Refuge, on the northeast margin of the Roswell Artesian Basin. The springs and sinkholes are formed in gypsum bedrock that serves as a leaky confining unit for an artesian aquifer in the underlying San Andres limestone. Because wetlands on the Refuge provide habitat for threatened and endangered species, there is concern about the potential for contamination by anthropogenic activity in the aquifer recharge area. Estimates of the time required for groundwater to travel through the artesian aquifer vary widely because of uncertainties regarding karst conduit flow. A better understanding of groundwater residence time is required to make informed decisions about management of water resources and wildlife habitat at Bitter Lakes. Results indicate that the artesian aquifer contains a significant component of water recharged within the last 10–50 years, combined with pre-modern groundwater originating from deeper underlying aquifers, some of which may be indirectly sourced from the high Sacramento Mountains to the west.  相似文献   

18.
Beljanica Mountain in eastern Serbia is a part of the Carpathian Balkan arch (northern Alpine branch). It covers an area of about 300 km2 and consists mostly of Jurassic and Cretaceous limestones. Numerous surface karst features, long caves and several large karstic springs located in Beljanica’s piedmont along the contact of karstic and non-karstic rocks are all indicators of an intense karstification. Currently, the large karstic water reserves of Beljanica Mountain are not properly utilized because of their distance from main consumers, the objection by national water managers that the springs lack a stable and sufficient discharge particularly during recession periods. Due to its unpolluted and high quality water, the area is a great prospect for future water supply, and provides an opportunity for artificial regulation and for the design and implementation of specific tapping structures. This paper includes an analysis of the created 3D ArcGIS model of karst interior and its correlation with historical and newly collected data of spring discharges and groundwater physico-chemical characteristics. The results of karst aquifer monitoring (both quantitative and qualitative) are linked with the results of extensive field geological and speleological survey of the upper non-saturated part of the karst (such as sinkholes, pits and caves) and with the investigation of the permanently saturated deeper part of the aquifer (including the diving methods). The model of karst interior is based on the data from the 69 caves, 15 sinks and 1,682 dolines (sinkholes) surveyed. The total length of the karst channels network, calculated using the GIS model and presented in a 3D environment, is 647 km. The catchment areas of five major springs that drain the areas are estimated to range from only 7 km2 (Malo Vrelo Spring) to 124 km2 (Vrelo Mlave Spring). The groundwater exploitable reserves of Beljanica karst aquifer are estimated to be over 4 m3/s. The waters are low mineralized, unpolluted and have a great potential for water supply.  相似文献   

19.
通过采用单位面积河流在单位水头差作用下的渗漏量来表征河流渗漏能力,建立渗流井取水理想模型,分别计算了在不同河流渗漏能力和含水层渗透性能条件下,竖井降深对渗流井出水量的影响。建立渗流井取水非稳定流模型,计算了在前期稳定竖井降深不同条件下,河流断流后渗流井出水量衰减过程及竖井降深发展过程。提出渗流井合理竖井降深应根据河流与地下水是否脱节以及含水层渗透性能,在岸边渗流井中部及一侧各布设一个观测孔,根据观测孔水位进行确定。对于含水层渗透性能较强地区,渗流井竖井降深应使得渗流井范围内地下水位与河流脱节,但高于辐射孔顶面;对于含水层渗透性能较差地区,渗流井竖井降深应使得侧部观测孔水位接近河床底面或刚出现脱节。  相似文献   

20.
Karst aquifers are often protected by a thin mantle of unconsolidated sediment. Soil pipes and sinkholes may breach this natural protective barrier and open pathways for contaminants to quickly reach bedrock aquifers. Geophysical surveys offer a quick and noninvasive way to identify these features; such surveys may also be sequenced to reveal increasing detail in critical areas. At a study site in east-central Illinois, electromagnetic (EM) surveys mapped high conductivity anomalies over filled sinkholes and soil pipes that penetrated the unconsolidated cover. Two-dimensional inverted resistivity sections, made over these anomalies, depict filled sinkholes and soil pipes as conductive zones above deeply weathered bedrock fractures. Borings verified the geophysical models and suggest high conductivities associated with the filled sinkholes are the result of enhanced moisture near active soil pipes. EM surveys also identified conductive zones in the overburden above a probable bedrock fracture linking sinkhole areas 0.5 km apart. Resistivity and EM methods, used in a phased and sequential manner, thus proved useful in mapping filled sinkholes and in delineating the vertical and lateral connections between soil pipes and hydraulically active bedrock fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号