首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
CdTe thin films were brush plated on substrates maintained at temperatures in the range 30–90 °C from the precursors. The films exhibited cubic structure. Optical band gap of 1.45 eV was obtained. XPS measurements indicated the formation of CdTe. AFM studies indicated the formation of fine grains of the order of 50 nm, for the films deposited on room temperature substrates. Hot probe measurements indicated films to be n-type. A mobility in the range of 5–60 cm2 V−1 s−1 and a carrier density of 1015 cm−3 was obtained.  相似文献   

2.
CuAlO2 films were deposited on clean glass substrates by the acrylamide sol–gel dip coating technique. The coated films were dried in air oven for 30 min followed by heat treatment in air at different temperatures in the range of 350–500 °C. The films annealed at low temperatures exhibited weak x-ray diffraction (XRD) peaks. As the post anneal temperature increased beyond 375 °C, the XRD pattern exhibited the diffraction peaks of rhombohedral CuAlO2. Surface morphology of the films indicated that the films annealed at low temperatures exhibit small grains. As the annealing temperature increases larger grains are observed. The root mean square (rms) value of the surface roughness increases with annealing temperature. The films exhibited optical transmission above 75%. The films post annealed at low temperature exhibited lower transmission. Optical band gap in the range of 3.43–3.75 eV was obtained for the films annealed at different temperature. Hall measurements indicated p-type conductivity. Resistivity of the films decreased from 25.0 to 2.0 Ω cm as the anneal temperature increased. Mobility and carrier density increased with annealing temperature.  相似文献   

3.
Lead sulfide (PbS) thin films were prepared on soda lime glass substrates at room temperature by Chemical Bath Deposition (CBD) technique. This paper reports a comparative study of characteristic properties of as-prepared PbS thin films after thermal treatment through two different routes. Studies were carried out for as-prepared as well as rapidly and gradually annealed samples at 100, 200 and 300 °C. The characterizations of the films were carried out using X-ray diffraction, scanning electron microscopy and optical measurement techniques. The structural studies confirmed the polycrystalline nature and the cubic structure of the films. As-deposited films partly transformed to Pb2O3 when gradually annealed to 300 °C. The presence of nano crystallites was revealed by structural and optical absorption measurements. The values of average crystallite size were found to be in the range 18–20 nm. The variation in the microstructure, thickness, grain size, micro strain and optical band gap on two types of annealing were compared and analyzed. Data showed that post deposition parameters and thermal treatment strongly influence the optical properties of PbS films. Optical band gap of the film gets modified remarkably on annealing. Direct band gap energy values for rapidly and gradually annealed samples varied in the range of 1.68–2.01 eV and 1.68–2.12 eV respectively. Thus we were succeeded in tailoring direct band gap energies by post deposition annealing method.  相似文献   

4.
The effects of rapid thermal annealing on properties of crystalline nanostructured CdTe films treated with CdCl2 and prepared by vacuum evaporation are described. X-ray diffraction confirmed the crystalline nature of post-treated films with high preferential orientation around 23.7°, corresponding to a (1 1 1) diffracted plane of cubic phase. Optical band gap of CdTe films increased from 1.4 eV to 1.48 eV after annealing at 500 °C for 90 s. Atomic force microscopy of annealed films revealed an increase in root mean square roughness and grain size with increased annealing time. Electrical measurements of as-grown and annealed films are consistent with p-type; film resistivity has decreased significantly with increased annealing time.  相似文献   

5.
In this work, the B-doped Si rich oxide (SRO) thin films were deposited and then annealed using rapid thermal annealing (RTA) to form SiO2-matrix silicon nanocrystals (Si NCs). The effects of the RTA temperatures on the structural properties, conduction mechanisms and electrical properties of B-doped SRO thin films (BSF) were investigated systematically using Hall measurements, Fourier transform infrared spectroscopy and Raman spectroscopy. Results showed that the crystalline fraction of annealed BSF increased from 41.3% to 62.8%, the conductivity was increased from 4.48×10−3 S/cm to 0.16 s/cm, the carrier concentration was increased from 8.74×1017 cm−3 to 4.9×1018 cm−3 and the carrier mobility was increased from 0.032 cm2 V−1 s−1 to 0.2 cm2 V−1 s−1 when the RTA temperatures increased from 1050 °C to 1150 °C. In addition, the fluctuation induced tunneling (FIT) theory was applicable to the conduction mechanisms of SiO2-matrix boron-doped Si-NC thin films.  相似文献   

6.
The properties of solution-processed Al2O3 thin films annealed at different temperatures were thoroughly studied through thermogravimetry–differential thermal analysis, UV–vis-NIR spectrophotometer measurements, scanning electron microscopy, X-ray diffraction, atomic force microscopy and a series of electrical measurements. The solution-processed ZnInSnO thin films transistors (TFTs) with the prepared Al2O3 dielectric were annealed at different temperatures. The TFTs annealed at 600 °C have displayed excellent electrical performance such as the field-effect mobility of 116.9 cm2 V−1 s−1 and a subthreshold slope of 93.3 mV/dec. The performance of TFT device could be controlled by adjusting the annealing temperature. The results of two-dimensional device simulations demonstrate that the improvement of device performance are closely related with the reduction of interface defects between channel and dielectric and subgap density of stats (DOS) in the channel layer.  相似文献   

7.
FeS2 thin films were grown on a glass substrate using a physical vapor deposition technique at room temperature. Subsequently, the thin films were annealed in two different atmospheres: vacuum and vacuum-sulfur. In the vacuum-sulfur atmosphere a graphite box was used as sulfur container and the films were sulfurated successfully at 200–350 ºC. It was found that annealing in a vacuum-sulfur atmosphere was indispensable in order to obtain polycrystalline FeS2 thin films. The polycrystalline nature and pure phase were determined by XRD and Raman techniques and the electrical properties by the Hall effect. Using the sulfurating technique, the n-type semiconductor was prepared at 200–350 °C and a p-type at 500 °C. The carrier concentrations were between 1.19×1020 and 2.1×1020 cm−3. The mobility was 9.96–5.25 cm2 V−1 s−1 and the resistivity was 6.31×10−2 to 1.089×10−2 Ω cm. The results obtained from EDS showed that the films prepared in the vacuum-sulfur atmosphere were close to stoichiometric and that the indirect band gap varied between 1.03 and 0.945 eV.  相似文献   

8.
About 480 nm thick titanium oxide (TiO2) thin films have been deposited by electron beam evaporation followed by annealing in air at 300–600 °C with a step of 100 °C for a period of 2 h. Optical, electrical and structural properties are studied as a function of annealing temperature. All the films are crystalline (having tetragonal anatase structure) with small amount of amorphous phase. Crystallinity of the films improves with annealing at elevated temperatures. XRD and FESEM results suggest that the films are composed of nanoparticles of 25–35 nm. Raman analysis and optical measurements suggest quantum confinement effects since Raman peaks of the as-deposited films are blue-shifted as compared to those for bulk TiO2 Optical band gap energy of the as-deposited TiO2 film is 3.24 eV, which decreases to about 3.09 eV after annealing at 600 °C. Refractive index of the as-deposited TiO2 film is 2.26, which increases to about 2.32 after annealing at 600 °C. However the films annealed at 500 °C present peculiar behavior as their band gap increases to the highest value of 3.27 eV whereas refractive index, RMS roughness and dc-resistance illustrate a drop as compared to all other films. Illumination to sunlight decreases the dc-resistance of the as-deposited and annealed films as compared to dark measurements possibly due to charge carrier enhancement by photon absorption.  相似文献   

9.
Nanocrystalline Bi2S3 thin films are deposited on tin chloride treated glass substrate from the solution containing bismuth nitrate, triethanolamine (TEA) and thioacetamide (TAM) at a bath temperature 318 K. The prepared films are subsequently annealed at different temperatures for studying the effect of thermal treatment on the structural, surface morphology, optical and electrical properties of the films. The X-ray diffraction studies affirmed that the deposited films are orthorhombic structures with average crystallites size of 14 nm to 28 nm. The scanning electron microscopy (SEM) images revealed that the films comprise of grains of spherical shape of unequal size. It is also observed that the small particles aggregate together to form a larger cluster. The average grain sizes determined from the TEM images are smaller than the crystallites size obtained from the XRD studies. The optical band gap of the films has been estimated to be 2.24–2.05 eV for the as-prepared and annealed films, respectively. The electrical conductivity of the as prepared Bi2S3 films at room temperature is found to be in the order of 10−3 Ω−1 m−1.  相似文献   

10.
Antimony sulfide films have been deposited by pulse electrodeposition on Fluorine doped SnO2 coated glass substrates from aqueous solutions containing SbCl3 and Na2S2O3. The crystalline structure of the films was characterized by X-ray diffraction, Raman spectroscopy and TEM analysis. The deposited films were amorphous and upon annealing in nitrogen/sulfur atmosphere at 250 °C for 30 min, the films started to become crystalline with X-ray diffraction pattern matching that of stibnite, Sb2S3, (JCPDS 6-0474). AFM images revealed that Sb2S3 films have uniformly distributed grains on the surface and the grain agglomeration occurs with annealing. The optical band gap calculated from the transmittance and the reflectance studies were 2.2 and 1.65 eV for as deposited and 300 °C annealed films, respectively. The annealed films were photosensitive and exhibited photo-to-dark current ratio of two orders of magnitude at 1 kW/m2 tungsten halogen radiation.  相似文献   

11.
Thin film microstructure and its properties can be effectively altered with post deposition heat treatments. In this respect, CdTe thin films were deposited on glass substrates at a substrate temperature of 200 °C using thermal evaporation technique, followed by air annealing at different temperatures from 200 to 500 °C. Structural analysis reveals that CdTe thin films have a cubic zincblend structure with two oxide phases related to CdTe2O5 and CdTeO3 at annealing temperature of 400 and 500 °C respectively. Regardless of the annealing temperature, the plane (111) was found to be the preferred orientation for all films. The crystallite size was observed to increase with annealing temperature. All films were found to display higher lattice parameters than the standard, and hence found to carry a compressive stress. Optical measurements suggest high uniformity of films both before and after post deposition heat treatment. Films annealed at 400 °C displayed superior optical properties due to its high refractive index, optical conductivity, relative density and low disorder. Furthermore, according to the compositional measurements, CdTe thin films were found to exhibit Te rich and Cd rich nature at regions near the substrate and center of the film respectively, for all annealing temperatures. However, composition of the regions near the substrate was found to become more Te rich with increasing annealing temperature. The study suggests that changing the annealing temperature as a post deposition treatment affects structural and optical properties of CdTe thin film as well as its composition. According to the observations, films annealed at 400 °C can be concluded to be the best films for photovoltaic applications due to its superior optical and structural properties.  相似文献   

12.
Polycrystalline tin sulfide (SnS) thin films were grown on conducting glass substrates by pulse electrodeposition. The effect of annealing on the physical properties such as structure, morphology, optical, and opto-electronic properties were evaluated to understand the effect of post-deposition treatment for SnS films. Annealing at temperatures higher than 250 °°C resulted in the formation of SnS2 as a second phase, however, no significant grain growth or morphological changes were observed for films after annealing at 350 °C. A small change in band gap of 0.1 eV observed for films annealed at 350 °C was interpreted as due to the formation of SnS2 rather than due to morphological changes. This interpretation was supported by X-ray diffractometry, scanning electron microscopy, and Raman spectral data. The electric conduction in the films is controlled by three shallow trap levels with activation energies 0.1, 0.05, and 0.03 eV. The trap with energy 0.03 eV disappeared after annealing at higher temperature, however, the other two traps were unaffected by annealing.  相似文献   

13.
Tin oxide (SnO2) thin films were deposited on glass substrates by thermal evaporation at different substrate temperatures. Increasing substrate temperature (Ts) from 250 to 450 °C reduced resistivity of SnO2 thin films from 18×10−4 to 4×10−4 Ω ▒cm. Further increase of temperature up to 550 °C had no effect on the resistivity. For films prepared at 450 °C, high transparency (91.5%) over the visible wavelength region of spectrum was obtained. Refractive index and porosity of the layers were also calculated. A direct band gap at different substrate temperatures is in the range of 3.55−3.77 eV. X-ray diffraction (XRD) results suggested that all films were amorphous in structure at lower substrate temperatures, while crystalline SnO2 films were obtained at higher temperatures. Scanning electron microscopy images showed that the grain size and crystallinity of films depend on the substrate temperature. SnO2 films prepared at 550 °C have a very smooth surface with an RMS roughness of 0.38 nm.  相似文献   

14.
The present communication reports the effect of thermal annealing on the physical properties of In2S3 thin films for eco-friendly buffer layer photovoltaic applications. The thin films of thickness 150 nm were deposited on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing in air atmosphere within a low temperature range 150–450 °C. These as-deposited and annealed films were subjected to the X-ray diffraction (XRD), UV–vis spectrophotometer, current–voltage tests and scanning electron microscopy (SEM) for structural, optical, electrical and surface morphological analysis respectively. The compositional analysis of as-deposited film is also carried out using energy dispersive spectroscopy (EDS). The XRD patterns reveal that the as-deposited and annealed films (≤300 °C) have amorphous nature while films annealed at 450 °C show tetragonal phase of β-In2S3 with preferred orientation (109) and polycrystalline in nature. The crystallographic parameters like lattice constant, inter-planner spacing, grain size, internal strain, dislocation density and number of crystallites per unit area are calculated for thermally annealed (450 °C) thin films. The optical band gap was found in the range 2.84–3.04 eV and observed to increase with annealing temperature. The current–voltage characteristics show that the as-deposited and annealed films exhibit linear ohmic behavior. The SEM studies show that the as-deposited and annealed films are uniform, homogeneous and free from crystal defects and voids. The grains in the thin films are similar in size and densely packed and observed to increase with thermal annealing. The experimental results reveal that the thermal annealing play significant role in the structural, optical, electrical and morphological properties of deposited In2S3 thin films and may be used as cadmium-free eco-friendly buffer layer for thin films solar cells applications.  相似文献   

15.
Transparent conducting indium tin oxide (ITO) thin films with the thickness of 300 nm were deposited on quartz substrates via electron beam evaporation, and five of them post-annealed in air atmosphere for 10 min at five selected temperature points from 200 °C to 600 °C, respectively. An UV–vis spectrophotometer and Hall measurement system were adopted to characterize the ITO thin films. Influence of thermal annealing in air atmosphere on electrical and optical properties was investigated in detail. The sheet resistance reached the minimum of 6.67 Ω/sq after annealed at 300 °C. It increased dramatically at even higher annealing temperature. The mean transmittance over the range from 400 nm to 800 nm reached the maximum of 89.03% after annealed at 400 °C, and the figure of merit reached the maximum of 17.79 (Unit: 10−3 Ω−1) under the same annealing condition. With the annealing temperature increased from 400 °C to 600 °C, the variations of transmittance were negligible, but the figure of merit decreased significantly due to the deterioration of electrical conductivity. With increasing the annealing temperature, the absorption edge shifted towards longer wavelength. It could be explained on the basis of Burstein–Moss shift. The values of optical band gap varied in the range of 3.866–4.392 eV.  相似文献   

16.
Manganese indium sulphide (MnIn2S4) thin films were deposited using an aqueous solution of MnCl2, InCl3 and (NH2)2CS in the molar ratio 1:2:4 by simple chemical spray pyrolysis technique. The thin film substrates were annealed in the temperature range between 250 and 350 °C to study their various physical properties. The structural properties as studied by X-ray diffraction showed that MnIn2S4 thin films have cubic spinel structure. The formation of cube and needle shaped grains was clearly observed from FE-SEM analysis. The energy dispersive spectrum (EDS) predicts the presence of Mn, In and S in the synthesized thin film. From the optical studies, it is analyzed that the maximum absorption co-efficient is in the order between 104 and 105 cm−1 and the maximum transmittance (75%) was noted in the visible and infrared regions. It is noted that, the band gap energy decreases (from 3.20 to 2.77 eV) with an increase of substrate temperature (from 250 to 350 °C). The observations from photoluminescence studies confirm the emission of blue, green, yellow and red bands which corresponds to the wavelength range 370–680 nm. Moreover, from the electrical studies, it is observed that, as the substrate temperature increases the conductivity also increases in the range 0.29–0.41×10−4 Ω−1 m−1. This confirms the highly semiconducting nature of the film. The thickness of the films was also measured and the values ranged between 537 nm (250 °C) to 483 nm (350 °C). This indicates that, as the substrate temperature increases, the thickness of the film decreases. From the present study, it is reported that the MnIn2S4 thin films are polycrystalline in nature and can be used as a suitable ternary semiconductor material for photovoltaic applications.  相似文献   

17.
Amorphous lanthanum aluminate thin films were deposited by atomic layer deposition on Si(1 0 0) using La(iPrCp)3, Al(CH3)3 and O3 species. The effects of post-deposition rapid thermal annealing on the physical and electrical properties of the films were investigated. High-temperature annealing at 900 °C in N2 atmosphere leads to the formation of amorphous La-aluminosilicate due to Si diffusion from the substrate. The annealed oxide exhibits a uniform composition through the film thickness, a large band gap of 7.0 ± 0.1 eV, and relatively high dielectric constant (κ) of 18 ± 1.  相似文献   

18.
Bismuth doped tin sulfide (SnS:Bi) thin films were deposited onto glass substrates by the spray pyrolysis technique at the substrate temperature of 350 °C. The effect of doping concentration [Bi/Sn] on their structural, optical and electrical properties was investigated as a function of bismuth doping between 0 and 8 at%. The XRD results showed that the films were polycrystalline SnS with orthorhombic structure and the crystallites in the films were oriented along (111) direction. Atomic force microscopy revealed that the particle size and surface roughness of the films increased due to Bi-doping. Optical analysis exhibited the band gap value of 1.40 eV for SnS:Bi (6 at%) which was lower than the band gap value for 0 at% of Bi (1.60 eV). The film has low resistivity of 4.788×10−1 Ω-cm and higher carrier concentration of 3.625×1018 cm−3 was obtained at a doping ratio of 6 at%.  相似文献   

19.
We studied the growth of CuInS2 thin films by single-source evaporation of CuInS2 powder in a high-vacuum system with a base pressure of 10?3 Pa. After evaporation, the films were annealed in a sulfur atmosphere at temperatures from 200 to 500 °C for 1 h. XRD curves and Raman spectra of the films demonstrated that chalcopyrite CuInS2 was the major crystalline phase. The morphology of CuxS exhibited a star-like structure, which we report for the first time. The phase composition and optical properties of our polycrystalline thin films were effectively modified by annealing in S. For films annealed at 200 and 350 °C, a secondary CuIn11S17 phase appeared, which may be related to solid-state reaction in the S atmosphere. This secondary CuIn11S17 phase has not been widely reported in previous studies. After annealing at 500 °C, only a chalcopyrite phase was detected, with bandgap energy of 1.46 eV, which is nearly identical to the optimal bandgap energy (1.5 eV) of single-crystal CuInS2. This indicates that the composition of the CuInS2 film annealed at 500 °C was nearly stoichiometric. The bandgap of the samples first increased and then decreased with increasing annealing temperature, which may be attributed to an increase in grain size, the secondary CuIn11S17 phase, and deviation from stoichiometry.  相似文献   

20.
Nanocrystalline CdO thin films were prepared onto a glass substrate at substrate temperature of 300 °C by a spray pyrolysis technique. Grown films were annealed at 250, 350, 450 and 550 °C for 2.5 h and studied by the X-ray diffraction, Hall voltage measurement, UV-spectroscopy, and scanning electron microscope. The X-ray diffraction study confirms the cubic structure of as-deposited and annealed films. The grain size increases whereas the dislocation density decreases with increasing annealing temperature. The Hall measurement confirms that CdO is an n-type semiconductor. The carrier density and mobility increase with increasing annealing temperature up to 450 °C. The temperature dependent dc resistivity of as-deposited film shows metallic behavior from room temperature to 370 K after which it is semiconducting in nature. The metallic behavior completely washed out by annealing the samples at different temperatures. Optical transmittance and band gap energy of the films are found to decrease with increasing annealing temperature and the highest transmittance is found in near infrared region. The refractive index and optical conductivity of the CdO thin films enhanced by annealing. Scanning electron microscopy confirms formation of nano-structured CdO thin films with clear grain boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号