首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为了对高速列车牵引变压器悬挂参数进行设计,提出了一种基于几何滤波效应的变压器悬挂参数设计思路。建立车辆-变压器耦合系统模型,推导了车辆振动响应功率谱密度函数,并从轨道不平顺激励函数、车辆设备耦合系统频响函数、车辆系统振动响应谱密度函数的角度出发探讨了滤波效应对车辆系统振动特性的影响,通过将变压器悬挂频率设计为滤波频率来衰减车体的弹性振动。研究结果表明:在低频范围车体极易因为轨道低频激励能量过大引起车体产生强迫振动;两种典型速度下,车体的低阶垂弯模态与轮轨激励共同作用导致车体产生较大振动幅值;车体的高阶垂弯模态因为滤波效应或者激励能量过低导致车体在高阶垂弯模态频率处振幅较小;对于设计时速250 km/h的高速列车,其变压器悬挂频率设计为9.8 Hz能显著衰减车体的弹性振动。研究结果可以为高速列车车下设备悬挂参数设计提供指导意义。  相似文献   

2.
为探究高速列车在流致振动作用下会车压力波对车内气压的影响机理,针对某线路试验高速动车组采用多重等效方法建立有限元车厢、流场以及耦合系统模型,并进行耦合系统模态分析;通过列车交会侧传感器实测会车压力波信号,对车厢耦合系统进行气压冲击加载,分析车内流致振动耦合响应情况;将线路实测车内气压数据运用经验模态分解方法自适应分解,获取各本征模态层,并与流致振动响应数据进行对比分析。结果表明,车体振动位移的频率分布与加载的会车压力波频率相吻合;车内气压级在6.1 Hz、14.67 Hz处较大,分别与耦合系统的第一阶非刚性模态频率与结构的第一阶模态频率相吻合;同时验证会车压力波在车厢流致振动耦合模型下对车内气压影响机理分析的正确性。  相似文献   

3.
轮轨激励下高速列车头车乘客室室内的声学响应研究   总被引:1,自引:0,他引:1  
建立了某高速列车头车-轨道的耦合动力学仿真模型、车身的有限元模型、乘客室的声学边界元模型,计算出了由轨道不平顺引起的乘客室内的噪声分布状况,得出了如下结论:当列车运行速度为200km/h时,乘客室内的A声级在61.9~69.6dBA之间变化;乘客室内A声级较大的场点在40Hz、200Hz频率处的声压级较大;要降低乘客室内的噪声,必须对总声级起决定作用的频率段(40Hz、200Hz)采取措施。针对40Hz的低频噪声,最好修改乘客室的底部结构或采取减振措施,以减少底板的振动幅度;针对200Hz的中频噪声,则宜在声学贡献最大的面板上采取阻尼降噪措施。  相似文献   

4.
随着高速列车车体结构轻量化的发展,中空挤压铝型材结构的车体在高速列车上得到广泛应用,而车体的振动声辐射是高速列车车内噪声的主要来源之一。基于FE-SEA混合法和统计能量分析(SEA)分别建立了高速列车车体铝型材振动声辐射的中频和高频预测模型,计算了在粉红噪声谱激励下和实测轮轨激励下铝型材辐射至半空间的声功率,探索了铝型材几何特征因素和不同速度实测轮轨激励对振动声辐射特性的影响。计算结果表明,在粉红噪声谱激励下,下板对铝型材振动声辐射影响最大,与参考铝型材相比相差大于1 dB。铝型材在实测轮轨激励下,辐射声功率的主要贡献频段为400 Hz~1 600 Hz,速度增大加剧了铝型材在400 Hz以上中高频频段的振动声辐射。相关计算结果将为高速列车车体铝型材的设计提供理论参考。  相似文献   

5.
针对某高速列车在运行时出现的异常抖振现象,实际测试该高速列车车体异常抖振加速度信号,将其时频特征、Sperling平稳性指标与非异常抖振加速度信号进行对比,分析发现,抖振时车体地板横向加速度信号呈现低频谐波特征,主频在10 Hz附近,Sperling指标超过"合格"限值。基于工作模态分析(OMA)并结合工作变形分析(ODS)结果识别车辆各阶模态对抖振变形的贡献量。结果表明,模态频率为9.461 Hz处的车辆模态对抖振变形贡献量最大,振型表现为车体和构架的同向蛇行运动。测试抖振车辆轴箱加速度信号和传递函数,发现轴箱受到的冲击存在时延,抖振加速度信号频率在10 Hz附近的相干性总体上优于平稳加速度信号。得出结论:轮轨接触不匹配引入的激励通过车辆悬挂系统向上传递,激起9.461 Hz处的车辆模态振动,发生抖振现象。  相似文献   

6.
通过建立CRTS III型板式无砟轨道-高架箱梁桥有限元模型,以德国低干扰谱激励下的轮轨垂向力为输入,对CRTS III型板式无砟轨道桥梁区段的高架线路动力学响应进行研究。研究结果表明:板壳单元很好地体现高架箱梁桥低频时的整体和局部振动情况,高架箱梁桥自振时顶板变化最为复杂,翼板在20阶以后振动加剧;德国低干扰谱激励下的高架箱梁桥的振动主要集中在200 Hz以下,与其他轨道型式类似;CRTS III型板式无砟轨道结构可明显降低高架箱梁桥结构在0-50 Hz频段内的低频振动,是一种具有良好减振作用的轨道结构型式。  相似文献   

7.
轨道不平顺激扰是影响高速列车横向振动最常见和最主要的因素,而目前对不同频率轨道激励下车辆横向振动以及其半主动悬挂控制算法实现的研究甚少。基于此,建立高速列车17自由度车辆横向振动仿真模型,运用经验模态分解基于频域采样的三角级数法模拟的轨道谱信号,并重构得到不同频率的轨道激励,对不同频率轨道激励下车辆横向振动和横向半主动悬挂天棚阻尼控制算法进行研究。研究结果表明,影响车辆横向振动的轨道谱信号主要集中在0~10 Hz;在270 km/h的运行速度下,当天棚阻尼控制算法的比例系数k取7.5~8.5时,车辆横向平稳性得到较大改善,可为轨道谱优化与改进以及天棚阻尼控制算法实现提供理论指导。  相似文献   

8.
针对高速列车的振动问题,通过线路模态试验进行车体结构模态参数研究,采用LMS test.lab振动噪声测试系统进行数据采集和分析后处理。基于环境激励模态试验方法及模态参数识别理论,运用PolyMax模态提取法,获取了车体的前三阶弹性模态参数和对应的模态振型,为车体结构优化设计提供依据。  相似文献   

9.
随着高速列车的轻量化设计,列车在运行过程中车体的柔性振动也越来越显著,当特定波长的轨道几何不平顺激励频率与车辆系统固有振动频率相近时,将会引起车辆系统与不平顺激励发生共振,从而影响列车运行安全与乘坐舒适度。为研究高速铁路轨道几何不平顺敏感波长,基于车辆-轨道耦合动力学理论,建立考虑柔性车体的高速列车-轨道耦合动力学模型,系统研究不同类型轨道不平顺波长变化对高速列车动力学性能的影响。在此基础上,分析不同行车速度条件下不同类型轨道几何不平顺的最不利波长和敏感波长范围。结果表明,车体柔性振动对高速铁路轨道几何不平顺敏感波长影响显著;不同行车速度条件下不同类型轨道几何不平顺的最不利波长和敏感波长范围均有所不同;高速铁路轨道几何不平顺敏感波长存在三个显著波段,其中3~10 m的短波敏感波长主要与车体柔性模态相关,10~60 m的中波敏感波长主要与构架刚体模态相关,而60~140 m的长波敏感波长主要与车体刚体模态有关。  相似文献   

10.
基于PolyMAX的声固耦合模态试验研究   总被引:2,自引:1,他引:1  
白车身的结构模态频率和模态振型反映了汽车车身结构的固有特性,对车内噪声有重要影响。车内空腔跟车身结构一样,同样拥有模态频率和模态振型。采用LMS数据采集系统对某国产SUV进行车内空腔声学模态试验。首先基于传声器阵列的方法获取响应点的信号,然后利用PolyMAX方法提取声学模态频率及振型。将声学模态频率与白车身结构模态频率进行对比分析,结果表明:车内空腔的第一、二阶声学模态分别跟白车身的第四、十阶结构模态有很强的耦合。最后通过实车测试验证了声固耦合共振时低频轰鸣的存在。可以在关键部件增加板厚、顶盖和地板附加阻尼层、顶盖加加强筋等方式改变车身结构的局部模态来破坏车身结构模态和声腔模态的强耦合状态,降低车内的低频轰鸣声  相似文献   

11.
基于谱元法建立车辆-轨道结构频域振动模型,其中轨道结构模拟为三层铁木辛柯梁,车辆部分考虑为整车模型,运用Lagrange方程实现车辆与轨道结构的耦合,并采用虚拟激励法将轨道不平顺模拟为虚拟荷载,通过求解车辆-轨道整体结构的谱元法方程,得到车辆-轨道结构在频域内的振动响应。结果表明:钢轨、轨道板和底座板的第一、二、四阶振动峰值分别由车体、转向架、车轮自振引起,其他振动峰值由轨道结构系统自振引起;钢轨、轨道板和底座板的振动能量分布在较宽的频率范围;在离开车辆一侧且距离端轮对2.5 m处,1~800 Hz内钢轨振动迅速衰减,当大于800 Hz时,钢轨振动衰减缓慢;在距离端轮对18 m处,25~1171 Hz内钢轨振动衰减基本稳定;在距离端轮对20.5 m处,小于25 Hz时,钢轨振动随着离开端轮对距离的增加迅速衰减,当大于1171 Hz时,钢轨振动则衰减较小。  相似文献   

12.
浮置板轨道参数激励振动研究   总被引:2,自引:0,他引:2  
浮置板轨道结构中,浮置板布置的周期性和不连续性导致轨道刚度的周期性变化。车辆行驶在浮置板轨道上时,轨道刚度的周期性变化会引起参数激励振动。为了研究该问题,将钢轨和浮置板视为模态梁,钢轨扣件和隔振器视为线性弹簧-阻尼器;车辆采用相邻车厢距离最近的两台转向架模型,建立了车辆-浮置板轨道耦合动力学模型。应用该模型分析了浮置板轨道参数激励振动的形成机理及影响因素,提出了减小参数激励振动的控制措施。计算结果表明:振动的频率成分主要为车轮通过浮置板的频率及其倍频;轮轨作用力随着车辆速度的提高而增加,随着隔振固有频率的减小而增加;调整浮置板下隔振器的位置和刚度可以降低参数激励振动引起的轮轨作用力。  相似文献   

13.
以南昌地铁1号线八一广场段为工程背景,对轨道-隧道-大地的三维有限元模型进行动力学分析。分别建立三种道床模型:整体道床、弹性支承块道床和钢弹簧浮置板道床。以振动加速度、1/3倍频程振动加速度级和Z振级作为评价指标,比较不同轨道结构下隧道壁及地面的振动响应。随之减振道床支承刚度的变化,分析道床的自振频率对减振效果的影响。计算表明:列车引起的地面振动主频在40 Hz附近;减振道床的自振频率对减振效果有较大影响;钢弹簧浮置板道床减振效果明显优于弹性支承块道床。  相似文献   

14.
有砟轨道路基发生不均匀沉降时,在列车荷载作用下,轨面会产生相应的沉降,进而影响列车运行的安全性和舒适度。在已有室内试验研究的基础上,采用二维颗粒流方法建立钢轨、轨枕和道砟的离散元模型,分析了路基不均匀沉降及列车荷载变化对轨面沉降的影响。结果表明:在路基不均匀沉降的波长一定时,随着波幅的增大,轨面沉降的波幅先逐渐增大而后稳定,并最终引起轨枕空吊;而轨面沉降的波长基本不受路基沉降波幅变化的影响,并且可按路基沉降波长以25°向上扩散至轨面进行简化计算;轨枕未出现空吊时,轨面沉降波长受列车轴重、动荷载大小及频率变化的影响很小,轨面沉降波幅受动荷载频率变化的影响很小,但受动荷载大小和轴重变化的影响显著。  相似文献   

15.
对某型号动车组M车首先进行谐响应分析,确定车体结构在作用0~100Hz简谐载荷时的响应特性,得出与乘客乘座舒适性直接相关的车体部位的响应值与频率的关系曲线,将其与人体各部位或系统的固有频率对比后得出人体在M车车体结构受简谐载荷时的固有振动特性的敏感程度。然后以轨道轨距不平顺为例,对M车进行随机振动(PSD)分析,预测车体在受到基础激励的实际运行过程中结构响应情况,分析车体运行时影响乘客乘座舒适性的主要频率范围及原因。  相似文献   

16.
轮轨动态输入激励直接影响车辆-轨道耦合模型的计算结果。目前在地铁列车环境振动振源研究中,大多只考虑了轨道不平顺的激励而忽略了车轮不圆顺的影响。为了构建地铁轮轨耦合不平顺激励、综合分析轨道不平顺以及车轮、钢轨的磨耗状态对轨道动力响应的影响,对一列地铁列车进行了车轮不圆顺的现场测试,同时对一段区间隧道内的轨道不平顺和钢轨粗糙度均进行了测试。基于车辆-轨道耦合频域解析模型计算了轨道动力响应,比较了不同轮轨激励模式对计算结果的影响。同时,在同一区间隧道内实测了钢轨振动响应,用以验证不同激励模式计算结果的准确性。结果表明:美国谱和Sato谱会低估车轮不圆顺典型波长控制频段的振动响应,从而难以准确获得8 Hz~200 Hz频段的振动响应;按能量叠加方法获得的轮轨耦合不平顺谱可反映完备的轮轨激励信息,以此作为激励,在8 Hz~200 Hz频段,可计算获得与实测值更相近的模拟计算结果。  相似文献   

17.
为研究CRTS III型板式无砟轨道环境振动特点,对成灌铁路某桥梁段地面振动进行现场测试,分析不同测点地面振动加速度时程特点、频谱特征,并进行1/3倍频程分析和Z振级的衰减分析。结果表明,列车以180 km/h速度通过时,地面振动持续时间约6 s,距线路中心10 m处振动峰值加速度为60 mm/s2;在10 m处振动频谱分布范围在20~90 Hz,高频振动随距离衰减更快,大于20 m处振动主要以15~45 Hz为主;地面振动Z振级的衰减符合对数衰减规律。  相似文献   

18.
建立带有钢轨吸振器的高速铁路高架结构板式轨道与桥梁垂向耦合振动模型,分析钢轨吸振器对轨道和桥梁结构垂向振动的影响。模型已考虑了钢轨吸振器、板式轨道结构及桥梁间的耦合作用。钢轨吸振器被视为两自由度的质量-弹簧系统,钢轨、轨道板和桥梁被视为多层叠合梁模型,彼此用弹簧阻尼元件联接。利用动柔度函数,得到吸振器-板式轨道-桥梁系统垂向振动响应的解析表达式,并以轮轨表面粗糙度谱作为激励求解模型的振动响应。研究结果表明:钢轨吸振器在180 Hz~300 Hz及700 Hz~1 000 Hz频段内对整个高架轨道系统的位移幅值及相位、振动衰减产生较明显的影响;同时,在轮轨表面粗糙度谱的激励下,带有钢轨吸振器的轮轨系统的轮轨力在pinned-pinned频率处明显减小,在前两阶自振主频附近钢轨吸振器对整个高架轨道系统结构振动的影响较明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号