共查询到20条相似文献,搜索用时 52 毫秒
1.
聚类算法作为一种重要的数据挖掘的方法,能找到样本中相对集中的区域。本文分析了一些常用聚类算法以及局限性,并且针对K-means算法中初始点的选择,讨论了一种改进的K-means算法的实现过程,以期得到比较理想的聚类效果。 相似文献
2.
一种基于密度的分布式聚类算法 总被引:1,自引:0,他引:1
对基于密度的分布式聚类算法DBDC(density based distributed clustering)进行改进,提出了一种基于密度的分布式聚类算法DBDC*.该算法在局部筛选代表点时结合贝叶斯信息准则BIC,得到少量精准反映局部站点数据分布的BIC核心点,有效降低了分布式聚类过程中的数据通信量,全局聚类时综合考虑了各站点数据的分布情况.实验结果表明,算法DBDC*的效率优于DBDC,聚类效果好. 相似文献
3.
K-means 是一种基于划分的聚类算法,由于 K-means 算法在选择初始聚类中心时是随机选取 k 个点,因此一旦 k 个点选取不合理,将会误导聚类过程,得到一个不合理的聚类结果。在分析聚类结果对初值依赖性的基础上,对初值选取方法进行了分析和研究,采取“射靶”的原理进行类中心搜索。从实验结果中可以发现,改进后 K-means 得到的聚类结果更加稳定,对初始聚类中心的依赖性减弱了。 相似文献
4.
为同时保证基分类器的准确性和差异性, 提出一种基于聚类和AdaBoost的自适应集成算法. 首先利用聚类算法将训练样本分成多个类簇; 然后分别在每个类簇上进行AdaBoost训练并得到一组分类器; 最后按加权投票策略进行分类器的集成. 每个分类器的权重是自适应的, 且为基于测试样本与每个类簇的相似性及分类器对此测试样本的分类置信度计算得到. 实验结果表明, 与AdaBoost,Bagging(bootstrap aggregating)和随机森林等代表性集成算法相比, 该算法可取得更高的分类精度. 相似文献
5.
在传统层次聚类基础上,提出并实现了一种基于距离的增量式聚类算法,并应用于粮食智能决策支持系统中,算法在保持层次聚类优点的基础上,利用原有的聚类结果提高聚类速度,并可以根据用户需要在聚类精度和聚类速度两方面选取一个适当的平衡点,有效地提高聚类分析的效率。 相似文献
6.
7.
K-means聚类算法是近年来数据挖掘学科的一个研究热点和重点,该算法是基于划分的聚类分析算法.目前这种算法在聚类分析中得到了广泛应用。本文将介绍K-means聚类算法的主要思想,及其优缺点。针对该算法经常陷入局部最优,以及对孤立点敏感等缺点,提出了一种基于模拟退火算法的方法对其进行优化,可以有效地防止该算法陷入局部最优的情况。 相似文献
8.
提出了一种新的基于双重采样的选择性集成学习算法。针对集成学习要求学习器个体的差异性分布在样本空间的不同部分,对得到的聚类个体学习器输出进行重采样,以此来计算聚类个体的差异性。针对集成学习要求得到的个体学习器具有一定的精确性,对所有得到的学习器个体集合进行重采样来评估聚类个体精确性。在此基础上选择出集成学习所需的个体集合。以谱聚类算法作为基学习器,用聚类集成策略部分解决了谱聚类算法存在的尺度参数敏感问题,在UCI数据集上的仿真实验验证了算法的有效性。 相似文献
9.
聚类集成是集成学习中的一个重要分支,其目标是解决无监督聚类分析中聚类算法的选择性、偏差性与数据特殊性等导致聚类结果不理想的问题。文章提出了一种基于数据关联的聚类集成方法(CEBDR),该算法先提取出在聚类成员中体现有关联关系的数据对象来组成新的类,然后对这些类进行二次聚类得到最终的集成结果。文中选用了一些标准数据集,采用CEBDR算法、已有的基聚类和聚类集成算法来进行对比实验,实验结果表明,该算法能够有效地提高聚类质量。 相似文献
10.
一种改进的K-means聚类算法 总被引:1,自引:0,他引:1
于丽 《辽宁师专学报(自然科学版)》2010,12(2):1-1,18
传统的K-means聚类算法对初始聚类中心的依赖程度很大,聚类结果会随聚类中心的选择不同波动很大,为了消除这种中心选择不确定性,提出一种改进的K-means聚类算法,从而有效地改善初始聚类中心点选择的随机性,提高聚类结果的稳定性.仿真实验结果表明,改进后的K-means聚类算法优于传统的算法. 相似文献
11.
多标记学习采用RBF神经网络与K-means聚类算法相结合取得了较好的效果,但由于聚类数事先不能很好地确定,无法给出准确的聚类个数值,会导致聚类质量下降、聚类结果不稳定等,进而影响RBF神经网络多标记算法的稳定性及分类性能。本文从样本几何结构的角度出发,采用一种聚类有效性指标函数,为每个类寻找最优的聚类个数,从而优化问题的求解。理论研究和实验结果表明,改进后的算法在分类的稳定性及分类性能方面都有较好的表现。 相似文献
12.
基于改进GA的K-均值聚类算法 总被引:3,自引:0,他引:3
利用遗传算法或免疫规划算法解决初始聚类中心是较好的方法,但容易出现局部早熟现象.为了克服以上缺点,借助免疫机制的优点,将免疫原理的选择操作机制引入遗传算法中,提出基于改进遗传的K-均值聚类算法,该方法结合K-均值算法的高效性和改进遗传算法的全局优化能力,较好地解决了聚类中心优化问题.试验结果表明,本算法能够有效改善聚类质量. 相似文献
13.
研究了K均值算法中初始聚类中心的选择对算法本身聚类精度及效率的影响,并提出了改进的算法(LK算法,Leader+K-means).LK算法中的初始聚类中心选择不是随机的,而是利用Leader算法得到若干个初始类中心,然后选择包含数据项最多的k个类中心,作为K均值算法的初始类中心.实验结果表明,LK算法在聚类结果的稳定性和正确率方面都是有效可行的. 相似文献
14.
原始的k-means算法是从样本点的集合中随机选取K个中心,这种选取具有盲目性和随意性,它在很大程度上决定了算法的有效性.为消除选取初始中心的盲目性,应充分利用已有数据样本点的信息.采取对数据进行预处理的方式来选取初始中心.实验证明新的初始点的选取不仅提高了算法的计算效率,也提高了算法最终确定的聚类的精度. 相似文献
15.
针对K均值聚类(K-means)算法处理复杂问题时易陷入局部最优值、聚类质量较差等不足,提出一种基于粒子群的三支聚类算法.该算法先以随机产生的聚类中心组合作为初始粒子,构成粒子群;然后,通过调整算法中的速度公式参数,使粒子在迭代过程中能较快速地找出全局最优解,即最优的聚类中心;最后,采用三支决策的方法考察数据与类的关系,把确定归属的数据分配到类的核心域,归属不确定的数据分配到类的边界域.实验结果验证了所提算法的有效性,在寻找全局最优值和聚类结果准确性等方面算法都具有较好的性能. 相似文献
16.
基于信息熵改进的 K-means 动态聚类算法 总被引:1,自引:2,他引:1
杨玉梅 《重庆邮电大学学报(自然科学版)》2016,28(2):254-259
初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题.因此,提出一个改进的K-means算法.改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始聚类的赋权函数选出质量较高的初始聚类中心点;然后,为算法的终止条件设定标准阈值来减少算法迭代次数,从而减少学习时间;最后,通过删除由信息动态变化而产生的冗余信息来减少动态聚类过程中的干扰,以使算法达到更准确更高效的聚类效果.实验结果表明,当数据样本数量较多时,相比于传统的K-means算法和其他改进的K-means算法,提出的算法在准确率和执行效率上都有较大提升. 相似文献
17.
一种改进的全局K-均值聚类算法 总被引:3,自引:0,他引:3
将快速K中心点聚类算法确定初始中心点的思想应用于全局K-均值聚类算法,对其选取下一个簇的最佳初始中心的方法进行改进,提出选取下一个簇的最佳初始中心的一种新方法.该新方法选择一个周围样本分布相对密集,且距离现有簇的中心比较远的样本为下一个簇的最佳初始中心,得到一种改进的全局K-均值聚类算法.改进后的算法不仅可以避免将噪音点作为下一个簇的最佳初始中心点,而且在不影响聚类效果的基础上缩短了聚类时间.通过UCI机器学习数据库数据以及随机生成的人工模拟数据实验测试,证明改进的全局K-均值聚类算法与全局K-均值聚类算法及快速全局K-均值聚类算法相比在聚类时间上更优越. 相似文献
18.
针对无线传感器网络分簇(clustering)问题,提出一种基于Fiedler矢量的分布式分簇改进算法.该算法利用Fiedler矢量的元素符号特性对网络进行递归分簇处理,引入网络拓扑信息,根据网络自身的内部连接自适应决定分簇数目,通过Fiedler矢量的元素数值选出簇头,并且算法给簇头子集筛选合适的网关节点以确保簇头子集的连通性.仿真实验表明,在共识频谱感知的基础上,该算法生成的簇头子集与全网络共识所收敛的结果相同,簇头子集共识收敛速度相对更快,耗时短,能够以更好的时效性、更高的能效达到与全网络共识收敛相同的效果. 相似文献
19.
20.
In this paper,we explore a novel ensemble method for spectral clustering.In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results,we propose the adaptive spectral clustering ensemble method to achieve a better clustering solution.This method can adaptively assess the number of the component members,which is not owned by many other algorithms.The component clusterings of the ensemble system are generated by spectral clustering(SC) which bears some good characteristics to engender the diverse committees.The selection process works by evaluating the generated component spectral clustering through resampling technique and population-based incremental learning algorithm(PBIL).Experimental results on UCI datasets demonstrate that the proposed algorithm can achieve better results compared with traditional clustering ensemble methods,especially when the number of component clusterings is large. 相似文献